
Capacity Achieving Codes: There and Back Again

Henry D. Pfister

Electrical and Computer Engineering
Information Initiative (iiD)

Duke University

2016 European School of Information Theory
Chalmers University, Gothenburg, Sweden

April 6th, 2016

Capacity Achieving Codes: There and Back Again 2 / 65

Acknowledgments

I Thanks to my coauthors involved in this work

I Krishna Narayanan

I Phong Nguyen

I Arvind Yedla

I Yung-Yih Jian

I Santhosh Kumar

I Shrinivas Kudekar, Marco Mondelli,
Eren Sasoglu, Ruediger Urbanke

I Thanks to the organizers!

I Alexandre Graell i Amat

I Fredrik Brännström

I Giuseppe Durisi

Capacity Achieving Codes: There and Back Again 3 / 65

Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation

Capacity Achieving Codes: There and Back Again 4 / 65

Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation

Capacity Achieving Codes: There and Back Again 5 / 65

Capacity of Point-to-Point Communication

X PY |X Y

I Coding for Discrete-Time Memoryless Channels

I Transition probability: PY |X(y|x) for x ∈ X and y ∈ Y
I Transmit a length-n codeword x ∈ C ⊂ Xn

I Decode to most likely codeword given received y

I Channel Capacity introduced by Shannon in 1948

I Random code of rate R , 1
n log2 |C| (bits per channel use)

I As n→∞, reliable transmission possible if R < C with

C , max
p(x)

I(X;Y)

Capacity Achieving Codes: There and Back Again 5 / 65

Capacity of Point-to-Point Communication

X PY |X Y

I Coding for Discrete-Time Memoryless Channels

I Transition probability: PY |X(y|x) for x ∈ X and y ∈ Y
I Transmit a length-n codeword x ∈ C ⊂ Xn

I Decode to most likely codeword given received y

I Channel Capacity introduced by Shannon in 1948

I Random code of rate R , 1
n log2 |C| (bits per channel use)

I As n→∞, reliable transmission possible if R < C with

C , max
p(x)

I(X;Y)

Capacity Achieving Codes: There and Back Again 6 / 65

The Binary Erasure Channel (BEC)

0

1

0

?

1

1− ε

ε

1− ε

ε

I Denoted BEC(ε) when erasure probability is ε

I C = 1− ε = expected fraction bits not erased

I Coding with a binary linear code

I Parity-check matrix H ∈ {0, 1}m×n with m = (1−R)n

I Codebook C , {x ∈ {0, 1}n |Hx = 0} has 2Rn codewords

I Let E denote the index set of erased positions so that

Hx =
[
HE HEc

][xE
yEc

]
= 0 ⇔ HExE = −HEcyEc

I Decoding fails iff: HE singular ⇔ cw exists with 1’s only in E
I One can achieve capacity by drawing H uniformly at random!

Capacity Achieving Codes: There and Back Again 6 / 65

The Binary Erasure Channel (BEC)

0

1

0

?

1

1− ε

ε

1− ε

ε

I Denoted BEC(ε) when erasure probability is ε

I C = 1− ε = expected fraction bits not erased

I Coding with a binary linear code

I Parity-check matrix H ∈ {0, 1}m×n with m = (1−R)n

I Codebook C , {x ∈ {0, 1}n |Hx = 0} has 2Rn codewords

I Let E denote the index set of erased positions so that

Hx =
[
HE HEc

][xE
yEc

]
= 0 ⇔ HExE = −HEcyEc

I Decoding fails iff: HE singular ⇔ cw exists with 1’s only in E
I One can achieve capacity by drawing H uniformly at random!

Capacity Achieving Codes: There and Back Again 6 / 65

The Binary Erasure Channel (BEC)

0

1

0

?

1

1− ε

ε

1− ε

ε

I Denoted BEC(ε) when erasure probability is ε

I C = 1− ε = expected fraction bits not erased

I Coding with a binary linear code

I Parity-check matrix H ∈ {0, 1}m×n with m = (1−R)n

I Codebook C , {x ∈ {0, 1}n |Hx = 0} has 2Rn codewords

I Let E denote the index set of erased positions so that

Hx =
[
HE HEc

][xE
yEc

]
= 0 ⇔ HExE = −HEcyEc

I Decoding fails iff: HE singular ⇔ cw exists with 1’s only in E

I One can achieve capacity by drawing H uniformly at random!

Capacity Achieving Codes: There and Back Again 6 / 65

The Binary Erasure Channel (BEC)

0

1

0

?

1

1− ε

ε

1− ε

ε

I Denoted BEC(ε) when erasure probability is ε

I C = 1− ε = expected fraction bits not erased

I Coding with a binary linear code

I Parity-check matrix H ∈ {0, 1}m×n with m = (1−R)n

I Codebook C , {x ∈ {0, 1}n |Hx = 0} has 2Rn codewords

I Let E denote the index set of erased positions so that

Hx =
[
HE HEc

][xE
yEc

]
= 0 ⇔ HExE = −HEcyEc

I Decoding fails iff: HE singular ⇔ cw exists with 1’s only in E
I One can achieve capacity by drawing H uniformly at random!

Capacity Achieving Codes: There and Back Again 7 / 65

Some Early Milestones in Coding

I 1948: Shannon defines channel capacity and random codes

I 1950: Hamming formalizes linear codes and Hamming distance

I 1954: Reed-Muller codes (Muller gives codes, Reed the decoder)

I 1955: Elias introduces the erasure channel and convolutional codes;
also shows random parity-check codes achieve capacity on the BEC

I 1959: BCH Codes (Hocquenghem’59 and Bose-Ray-Chaudhuri’60)

I 1960: Gallager introduces low-density parity-check (LDPC) codes
and iterative decoding

I 1960: Reed-Solomon codes

Capacity Achieving Codes: There and Back Again 7 / 65

Some Early Milestones in Coding

I 1948: Shannon defines channel capacity and random codes

I 1950: Hamming formalizes linear codes and Hamming distance

I 1954: Reed-Muller codes (Muller gives codes, Reed the decoder)

I 1955: Elias introduces the erasure channel and convolutional codes;
also shows random parity-check codes achieve capacity on the BEC

I 1959: BCH Codes (Hocquenghem’59 and Bose-Ray-Chaudhuri’60)

I 1960: Gallager introduces low-density parity-check (LDPC) codes
and iterative decoding

I 1960: Reed-Solomon codes

Capacity Achieving Codes: There and Back Again 7 / 65

Some Early Milestones in Coding

I 1948: Shannon defines channel capacity and random codes

I 1950: Hamming formalizes linear codes and Hamming distance

I 1954: Reed-Muller codes (Muller gives codes, Reed the decoder)

I 1955: Elias introduces the erasure channel and convolutional codes;
also shows random parity-check codes achieve capacity on the BEC

I 1959: BCH Codes (Hocquenghem’59 and Bose-Ray-Chaudhuri’60)

I 1960: Gallager introduces low-density parity-check (LDPC) codes
and iterative decoding

I 1960: Reed-Solomon codes

Capacity Achieving Codes: There and Back Again 7 / 65

Some Early Milestones in Coding

I 1948: Shannon defines channel capacity and random codes

I 1950: Hamming formalizes linear codes and Hamming distance

I 1954: Reed-Muller codes (Muller gives codes, Reed the decoder)

I 1955: Elias introduces the erasure channel and convolutional codes;
also shows random parity-check codes achieve capacity on the BEC

I 1959: BCH Codes (Hocquenghem’59 and Bose-Ray-Chaudhuri’60)

I 1960: Gallager introduces low-density parity-check (LDPC) codes
and iterative decoding

I 1960: Reed-Solomon codes

Capacity Achieving Codes: There and Back Again 7 / 65

Some Early Milestones in Coding

I 1948: Shannon defines channel capacity and random codes

I 1950: Hamming formalizes linear codes and Hamming distance

I 1954: Reed-Muller codes (Muller gives codes, Reed the decoder)

I 1955: Elias introduces the erasure channel and convolutional codes;
also shows random parity-check codes achieve capacity on the BEC

I 1959: BCH Codes (Hocquenghem’59 and Bose-Ray-Chaudhuri’60)

I 1960: Gallager introduces low-density parity-check (LDPC) codes
and iterative decoding

I 1960: Reed-Solomon codes

Capacity Achieving Codes: There and Back Again 7 / 65

Some Early Milestones in Coding

I 1948: Shannon defines channel capacity and random codes

I 1950: Hamming formalizes linear codes and Hamming distance

I 1954: Reed-Muller codes (Muller gives codes, Reed the decoder)

I 1955: Elias introduces the erasure channel and convolutional codes;
also shows random parity-check codes achieve capacity on the BEC

I 1959: BCH Codes (Hocquenghem’59 and Bose-Ray-Chaudhuri’60)

I 1960: Gallager introduces low-density parity-check (LDPC) codes
and iterative decoding

I 1960: Reed-Solomon codes

Capacity Achieving Codes: There and Back Again 7 / 65

Some Early Milestones in Coding

I 1948: Shannon defines channel capacity and random codes

I 1950: Hamming formalizes linear codes and Hamming distance

I 1954: Reed-Muller codes (Muller gives codes, Reed the decoder)

I 1955: Elias introduces the erasure channel and convolutional codes;
also shows random parity-check codes achieve capacity on the BEC

I 1959: BCH Codes (Hocquenghem’59 and Bose-Ray-Chaudhuri’60)

I 1960: Gallager introduces low-density parity-check (LDPC) codes
and iterative decoding

I 1960: Reed-Solomon codes

Capacity Achieving Codes: There and Back Again 8 / 65

Achieving Capacity in Practice

But, more than 35 years passed before we could:

I Achieve capacity in practice

I Provably achieve capacity with determinstic constructions

Modern Milestones:

I 1993: Turbo Codes (Berrou, Glavieux, Thitimajshima)

I 1995: Rediscovery of LDPC codes (MacKay-Neal,Spielman)

I 1997: Optimized irregular LDPC codes for the BEC (LMSSS)

I 2001: Optimized irregular LDPC codes for BMS channels (RSU)

I 2008: Polar codes provable, low-complexity, deterministic (Arikan)

I 1999-2011: Understanding LDPC convolutional codes and coupling

Capacity Achieving Codes: There and Back Again 8 / 65

Achieving Capacity in Practice

But, more than 35 years passed before we could:

I Achieve capacity in practice

I Provably achieve capacity with determinstic constructions

Modern Milestones:

I 1993: Turbo Codes (Berrou, Glavieux, Thitimajshima)

I 1995: Rediscovery of LDPC codes (MacKay-Neal,Spielman)

I 1997: Optimized irregular LDPC codes for the BEC (LMSSS)

I 2001: Optimized irregular LDPC codes for BMS channels (RSU)

I 2008: Polar codes provable, low-complexity, deterministic (Arikan)

I 1999-2011: Understanding LDPC convolutional codes and coupling

Capacity Achieving Codes: There and Back Again 8 / 65

Achieving Capacity in Practice

But, more than 35 years passed before we could:

I Achieve capacity in practice

I Provably achieve capacity with determinstic constructions

Modern Milestones:

I 1993: Turbo Codes (Berrou, Glavieux, Thitimajshima)

I 1995: Rediscovery of LDPC codes (MacKay-Neal,Spielman)

I 1997: Optimized irregular LDPC codes for the BEC (LMSSS)

I 2001: Optimized irregular LDPC codes for BMS channels (RSU)

I 2008: Polar codes provable, low-complexity, deterministic (Arikan)

I 1999-2011: Understanding LDPC convolutional codes and coupling

Capacity Achieving Codes: There and Back Again 8 / 65

Achieving Capacity in Practice

But, more than 35 years passed before we could:

I Achieve capacity in practice

I Provably achieve capacity with determinstic constructions

Modern Milestones:

I 1993: Turbo Codes (Berrou, Glavieux, Thitimajshima)

I 1995: Rediscovery of LDPC codes (MacKay-Neal,Spielman)

I 1997: Optimized irregular LDPC codes for the BEC (LMSSS)

I 2001: Optimized irregular LDPC codes for BMS channels (RSU)

I 2008: Polar codes provable, low-complexity, deterministic (Arikan)

I 1999-2011: Understanding LDPC convolutional codes and coupling

Capacity Achieving Codes: There and Back Again 8 / 65

Achieving Capacity in Practice

But, more than 35 years passed before we could:

I Achieve capacity in practice

I Provably achieve capacity with determinstic constructions

Modern Milestones:

I 1993: Turbo Codes (Berrou, Glavieux, Thitimajshima)

I 1995: Rediscovery of LDPC codes (MacKay-Neal,Spielman)

I 1997: Optimized irregular LDPC codes for the BEC (LMSSS)

I 2001: Optimized irregular LDPC codes for BMS channels (RSU)

I 2008: Polar codes provable, low-complexity, deterministic (Arikan)

I 1999-2011: Understanding LDPC convolutional codes and coupling

Capacity Achieving Codes: There and Back Again 8 / 65

Achieving Capacity in Practice

But, more than 35 years passed before we could:

I Achieve capacity in practice

I Provably achieve capacity with determinstic constructions

Modern Milestones:

I 1993: Turbo Codes (Berrou, Glavieux, Thitimajshima)

I 1995: Rediscovery of LDPC codes (MacKay-Neal,Spielman)

I 1997: Optimized irregular LDPC codes for the BEC (LMSSS)

I 2001: Optimized irregular LDPC codes for BMS channels (RSU)

I 2008: Polar codes provable, low-complexity, deterministic (Arikan)

I 1999-2011: Understanding LDPC convolutional codes and coupling

Capacity Achieving Codes: There and Back Again 8 / 65

Achieving Capacity in Practice

But, more than 35 years passed before we could:

I Achieve capacity in practice

I Provably achieve capacity with determinstic constructions

Modern Milestones:

I 1993: Turbo Codes (Berrou, Glavieux, Thitimajshima)

I 1995: Rediscovery of LDPC codes (MacKay-Neal,Spielman)

I 1997: Optimized irregular LDPC codes for the BEC (LMSSS)

I 2001: Optimized irregular LDPC codes for BMS channels (RSU)

I 2008: Polar codes provable, low-complexity, deterministic (Arikan)

I 1999-2011: Understanding LDPC convolutional codes and coupling

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 9 / 65

Key Tools That Made the Difference

I Factor Graph (FG)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I EXtrinsic Information Transfer (EXIT) Curves

Capacity Achieving Codes: There and Back Again 10 / 65

Applications of These Tools

I Error-Correcting Codes

I Random code defined by random factor graph

I Low-complexity decoding via belief propagation

I Analysis of belief-propagation decoding via density evolution

I Provides code constructions that provably achieve capacity!

I Boolean Satisfiability: K-SAT

I Random instance of K-SAT defined by random factor graph

I Non-rigorous analysis via the cavity method

I Predicted thresholds later proved exact!

I Compressed Sensing

I Random measurement matrix defined by random factor graph

I Low-complexity reconstruction via message passing

I Schemes provably achieve the information-theoretic limit!

Capacity Achieving Codes: There and Back Again 10 / 65

Applications of These Tools

I Error-Correcting Codes

I Random code defined by random factor graph

I Low-complexity decoding via belief propagation

I Analysis of belief-propagation decoding via density evolution

I Provides code constructions that provably achieve capacity!

I Boolean Satisfiability: K-SAT

I Random instance of K-SAT defined by random factor graph

I Non-rigorous analysis via the cavity method

I Predicted thresholds later proved exact!

I Compressed Sensing

I Random measurement matrix defined by random factor graph

I Low-complexity reconstruction via message passing

I Schemes provably achieve the information-theoretic limit!

Capacity Achieving Codes: There and Back Again 10 / 65

Applications of These Tools

I Error-Correcting Codes

I Random code defined by random factor graph

I Low-complexity decoding via belief propagation

I Analysis of belief-propagation decoding via density evolution

I Provides code constructions that provably achieve capacity!

I Boolean Satisfiability: K-SAT

I Random instance of K-SAT defined by random factor graph

I Non-rigorous analysis via the cavity method

I Predicted thresholds later proved exact!

I Compressed Sensing

I Random measurement matrix defined by random factor graph

I Low-complexity reconstruction via message passing

I Schemes provably achieve the information-theoretic limit!

Capacity Achieving Codes: There and Back Again 11 / 65

Polya’s Dictum

If you can’t solve a problem, then it probably contains an
easier problem that you can’t solve: find it.

I The solution of the simpler problem often provides insight that
allows one to crack the harder problem.

I To achieve channel capacity in practice, we now know that a good
“easy” problem would have been:

I “Design a code that achieves capacity on the BEC and
is encodable and decodable in quasi-linear time”

Capacity Achieving Codes: There and Back Again 11 / 65

Polya’s Dictum

If you can’t solve a problem, then it probably contains an
easier problem that you can’t solve: find it.

I The solution of the simpler problem often provides insight that
allows one to crack the harder problem.

I To achieve channel capacity in practice, we now know that a good
“easy” problem would have been:

I “Design a code that achieves capacity on the BEC and
is encodable and decodable in quasi-linear time”

Capacity Achieving Codes: There and Back Again 11 / 65

Polya’s Dictum

If you can’t solve a problem, then it probably contains an
easier problem that you can’t solve: find it.

I The solution of the simpler problem often provides insight that
allows one to crack the harder problem.

I To achieve channel capacity in practice, we now know that a good
“easy” problem would have been:

I “Design a code that achieves capacity on the BEC and
is encodable and decodable in quasi-linear time”

Capacity Achieving Codes: There and Back Again 12 / 65

Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation

Capacity Achieving Codes: There and Back Again 13 / 65

Factor Graphs

I A factor graph provides a graphical representation of the local
dependence structure for a set of random variables

I Bipartite graph with variables x1, . . . , xn and factors f1, . . . , fm

I Consider random variables (X1, X2, . . . , X4) ∈ X 4 and Y where:

P (x1, x2, x3, x4) , P(X1 =x1, X2 =x2, . . . , X4 =x4|Y = y)

∝ f(x1, x2, x3, x4)

, f1(x1, x2)f2(x2, x3)f3(x3, x4)

I Given Y = y, this describes a Markov chain whose factor graph is

x1 f1 x2 f2 x3 f3 x4

Capacity Achieving Codes: There and Back Again 13 / 65

Factor Graphs

I A factor graph provides a graphical representation of the local
dependence structure for a set of random variables

I Bipartite graph with variables x1, . . . , xn and factors f1, . . . , fm

I Consider random variables (X1, X2, . . . , X4) ∈ X 4 and Y where:

P (x1, x2, x3, x4) , P(X1 =x1, X2 =x2, . . . , X4 =x4|Y = y)

∝ f(x1, x2, x3, x4)

, f1(x1, x2)f2(x2, x3)f3(x3, x4)

I Given Y = y, this describes a Markov chain whose factor graph is

x1 f1 x2 f2 x3 f3 x4

Capacity Achieving Codes: There and Back Again 13 / 65

Factor Graphs

I A factor graph provides a graphical representation of the local
dependence structure for a set of random variables

I Bipartite graph with variables x1, . . . , xn and factors f1, . . . , fm

I Consider random variables (X1, X2, . . . , X4) ∈ X 4 and Y where:

P (x1, x2, x3, x4) , P(X1 =x1, X2 =x2, . . . , X4 =x4|Y = y)

∝ f(x1, x2, x3, x4)

, f1(x1, x2)f2(x2, x3)f3(x3, x4)

I Given Y = y, this describes a Markov chain whose factor graph is

x1 f1 x2 f2 x3 f3 x4

Capacity Achieving Codes: There and Back Again 14 / 65

Conditional Independence for Factor Graphs

I Let A,B, S ⊂ [n] be disjoint subsets of VNs in factor graph G

I If S separates A from B (i.e., there is no path in G from A to
B that avoids S), then we have XA ⊥⊥ XB | XS

P (xA, xB |xS) = P (xA|xS)P (xB |xS)

I Markov chain example: A = {x1, x2}, B = {x4}, S = {x3}

x1 f12 x2 x4

I Sketch of Proof:

I Fixing XS=xS separates the FG into disjoint components

I Groups of VNs in different components are independent

I XA ⊥⊥ XB because A and B are in different components

Capacity Achieving Codes: There and Back Again 14 / 65

Conditional Independence for Factor Graphs

I Let A,B, S ⊂ [n] be disjoint subsets of VNs in factor graph G

I If S separates A from B (i.e., there is no path in G from A to
B that avoids S), then we have XA ⊥⊥ XB | XS

P (xA, xB |xS) = P (xA|xS)P (xB |xS)

I Markov chain example: A = {x1, x2}, B = {x4}, S = {x3}

x1 f12 x2 f23 x3 f34 x4

I Sketch of Proof:

I Fixing XS=xS separates the FG into disjoint components

I Groups of VNs in different components are independent

I XA ⊥⊥ XB because A and B are in different components

Capacity Achieving Codes: There and Back Again 14 / 65

Conditional Independence for Factor Graphs

I Let A,B, S ⊂ [n] be disjoint subsets of VNs in factor graph G

I If S separates A from B (i.e., there is no path in G from A to
B that avoids S), then we have XA ⊥⊥ XB | XS

P (xA, xB |xS) = P (xA|xS)P (xB |xS)

I Markov chain example: A = {x1, x2}, B = {x4}, S = {x3}

x1 f12 x2 f23 x3 f34 x4

I Sketch of Proof:

I Fixing XS=xS separates the FG into disjoint components

I Groups of VNs in different components are independent

I XA ⊥⊥ XB because A and B are in different components

Capacity Achieving Codes: There and Back Again 14 / 65

Conditional Independence for Factor Graphs

I Let A,B, S ⊂ [n] be disjoint subsets of VNs in factor graph G

I If S separates A from B (i.e., there is no path in G from A to
B that avoids S), then we have XA ⊥⊥ XB | XS

P (xA, xB |xS) = P (xA|xS)P (xB |xS)

I Markov chain example: A = {x1, x2}, B = {x4}, S = {x3}

x1 f12 x2 f ′23 f ′34 x4

I Sketch of Proof:

I Fixing XS=xS separates the FG into disjoint components

I Groups of VNs in different components are independent

I XA ⊥⊥ XB because A and B are in different components

Capacity Achieving Codes: There and Back Again 15 / 65

Inference via Marginalization

I Marginalizing out all variables except X1 gives

P(X1 = x1|Y = y) ∝ g1(x1) ,
∑

(x2,...,x4)∈X 3

f(x1, x2, x3, x4)

I Thus, the maximum a posteriori decision for X1 given Y = y is

x̂1 = arg max
x1∈X

∑
(x2,...,x4)∈X 3

f(x1, x2, x3, x4)

I For a general function, this requires roughly |X |4 operations

I Marginalization is efficient for tree-structured factor graphs

I For the Markov chain, roughly 5 |X |2 operations required

g1(x1) =
∑
x2∈X

f1(x1, x2)
∑
x3∈X

f2(x2, x3)
∑
x4∈X

f3(x3, x4)

Capacity Achieving Codes: There and Back Again 15 / 65

Inference via Marginalization

I Marginalizing out all variables except X1 gives

P(X1 = x1|Y = y) ∝ g1(x1) ,
∑

(x2,...,x4)∈X 3

f(x1, x2, x3, x4)

I Thus, the maximum a posteriori decision for X1 given Y = y is

x̂1 = arg max
x1∈X

∑
(x2,...,x4)∈X 3

f(x1, x2, x3, x4)

I For a general function, this requires roughly |X |4 operations

I Marginalization is efficient for tree-structured factor graphs

I For the Markov chain, roughly 5 |X |2 operations required

g1(x1) =
∑
x2∈X

f1(x1, x2)
∑
x3∈X

f2(x2, x3)
∑
x4∈X

f3(x3, x4)

Capacity Achieving Codes: There and Back Again 16 / 65

The Importance of Factorization (1)

I Consider a random vector (X1, X2, . . . , X6) ∈ X 6 where

P(X1 = x1, . . . , X6 = x6|Y = y) ∝ f(x1, x2, x3, x4, x5, x6)

I Brute force marginal requires |X |5 operations for each x1 ∈ X :

g1(x1) ,
∑
x6
2∈X 5

f(x1, x2, x3, x4, x5, x6)

I Thus, we need |X |6 operations

I If f factors as follows, then the marginalization can be simplified:

f(x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5)

Capacity Achieving Codes: There and Back Again 16 / 65

The Importance of Factorization (1)

I Consider a random vector (X1, X2, . . . , X6) ∈ X 6 where

P(X1 = x1, . . . , X6 = x6|Y = y) ∝ f(x1, x2, x3, x4, x5, x6)

I Brute force marginal requires |X |5 operations for each x1 ∈ X :

g1(x1) ,
∑
x6
2∈X 5

f(x1, x2, x3, x4, x5, x6)

I Thus, we need |X |6 operations

I If f factors as follows, then the marginalization can be simplified:

f(x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5)

Capacity Achieving Codes: There and Back Again 16 / 65

The Importance of Factorization (1)

I Consider a random vector (X1, X2, . . . , X6) ∈ X 6 where

P(X1 = x1, . . . , X6 = x6|Y = y) ∝ f(x1, x2, x3, x4, x5, x6)

I Brute force marginal requires |X |5 operations for each x1 ∈ X :

g1(x1) ,
∑
x6
2∈X 5

f(x1, x2, x3, x4, x5, x6)

I Thus, we need |X |6 operations

I If f factors as follows, then the marginalization can be simplified:

f(x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5)

Capacity Achieving Codes: There and Back Again 17 / 65

The Importance of Factorization (2)

For example, we can write g1(x1) as:

=
∑
x6
2

f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5)

=
∑
x5
2

f1(x1, x2, x3)f3(x4)f4(x4, x5)

[∑
x6

f2(x1, x4, x6)

]

=
∑
x4
2

f1(x1, x2, x3)f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]

=
∑
x3
2

f1(x1, x2, x3)

[∑
x4

f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]]

=
∑
x2

[∑
x3

f1(x1, x2, x3)

][∑
x4

f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]]

This implementation requires roughly 2 |X |3 + 5 |X |2 operations

Capacity Achieving Codes: There and Back Again 17 / 65

The Importance of Factorization (2)

For example, we can write g1(x1) as:

=
∑
x6
2

f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5)

=
∑
x5
2

f1(x1, x2, x3)f3(x4)f4(x4, x5)

[∑
x6

f2(x1, x4, x6)

]

=
∑
x4
2

f1(x1, x2, x3)f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]

=
∑
x3
2

f1(x1, x2, x3)

[∑
x4

f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]]

=
∑
x2

[∑
x3

f1(x1, x2, x3)

][∑
x4

f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]]

This implementation requires roughly 2 |X |3 + 5 |X |2 operations

Capacity Achieving Codes: There and Back Again 17 / 65

The Importance of Factorization (2)

For example, we can write g1(x1) as:

=
∑
x6
2

f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5)

=
∑
x5
2

f1(x1, x2, x3)f3(x4)f4(x4, x5)

[∑
x6

f2(x1, x4, x6)

]

=
∑
x4
2

f1(x1, x2, x3)f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]

=
∑
x3
2

f1(x1, x2, x3)

[∑
x4

f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]]

=
∑
x2

[∑
x3

f1(x1, x2, x3)

][∑
x4

f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]]

This implementation requires roughly 2 |X |3 + 5 |X |2 operations

Capacity Achieving Codes: There and Back Again 17 / 65

The Importance of Factorization (2)

For example, we can write g1(x1) as:

=
∑
x6
2

f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5)

=
∑
x5
2

f1(x1, x2, x3)f3(x4)f4(x4, x5)

[∑
x6

f2(x1, x4, x6)

]

=
∑
x4
2

f1(x1, x2, x3)f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]

=
∑
x3
2

f1(x1, x2, x3)

[∑
x4

f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]]

=
∑
x2

[∑
x3

f1(x1, x2, x3)

][∑
x4

f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]]

This implementation requires roughly 2 |X |3 + 5 |X |2 operations

Capacity Achieving Codes: There and Back Again 17 / 65

The Importance of Factorization (2)

For example, we can write g1(x1) as:

=
∑
x6
2

f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5)

=
∑
x5
2

f1(x1, x2, x3)f3(x4)f4(x4, x5)

[∑
x6

f2(x1, x4, x6)

]

=
∑
x4
2

f1(x1, x2, x3)f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]

=
∑
x3
2

f1(x1, x2, x3)

[∑
x4

f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]]

=
∑
x2

[∑
x3

f1(x1, x2, x3)

][∑
x4

f3(x4)

[∑
x5

f4(x4, x5)

][∑
x6

f2(x1, x4, x6)

]]

This implementation requires roughly 2 |X |3 + 5 |X |2 operations

Capacity Achieving Codes: There and Back Again 18 / 65

The Factor Graph and Leaf Removal

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

g1(x1) =
∑
x5
2

f1(x1, x2, x3)f3(x4)f4(x4, x5)
∑
x6

f2(x1, x4, x6)

Capacity Achieving Codes: There and Back Again 18 / 65

The Factor Graph and Leaf Removal

x1

f1 f ′2

x2 x3 x4

f3 f4

x5

g1(x1) =
∑
x4
2

f1(x1, x2, x3)f3(x4)

[∑
x5

f4(x4, x5)

]
f ′2(x1, x4)

Capacity Achieving Codes: There and Back Again 18 / 65

The Factor Graph and Leaf Removal

x1

f1 f ′2

x2 x3 x4

f3 f ′4

x5

g1(x1) =
∑
x3
2

f1(x1, x2, x3)

[∑
x4

f3(x4)f ′4(x4)f ′2(x1, x4)

]

Capacity Achieving Codes: There and Back Again 18 / 65

The Factor Graph and Leaf Removal

x1

f1 f ′′2

x2 x3

x5

g1(x1) =
∑
x2

[∑
x3

f1(x1, x2, x3)

]
f ′′2 (x1)

Capacity Achieving Codes: There and Back Again 18 / 65

The Factor Graph and Leaf Removal

x1

f ′1 f ′′2

x2

x5

g1(x1) =

[∑
x2

f ′1(x1, x2)

]
f ′′2 (x1)

Capacity Achieving Codes: There and Back Again 18 / 65

The Factor Graph and Leaf Removal

x1

f ′′1 f ′′2

x2

x5

g1(x1) = f ′′1 (x1)f ′′2 (x1)

Capacity Achieving Codes: There and Back Again 19 / 65

Constraint Satisfaction and Zero-One Factors

I A non-negative function f : Xn → R defines a distribution on Xn:

P (x) , P(X1 =x1, . . . , Xn=xn)

=
1

Z
f(x) ,

1

Z

m∏
a=1

fa(x∂a),

I where x∂a is the subvector of variables involved in factor a

I and Z ,
∑
x f(x) is called the partition function

I For Constraint Satisfaction Problems (CSPs)

I All factors fa(x∂a) take values in {0, 1}
I The set of valid configurations is {x ∈ Xn|f(x) = 1}
I Thus, Z equals the number of valid configurations

I P (x) is uniform over the set of valid configurations

Capacity Achieving Codes: There and Back Again 19 / 65

Constraint Satisfaction and Zero-One Factors

I A non-negative function f : Xn → R defines a distribution on Xn:

P (x) , P(X1 =x1, . . . , Xn=xn)

=
1

Z
f(x) ,

1

Z

m∏
a=1

fa(x∂a),

I where x∂a is the subvector of variables involved in factor a

I and Z ,
∑
x f(x) is called the partition function

I For Constraint Satisfaction Problems (CSPs)

I All factors fa(x∂a) take values in {0, 1}
I The set of valid configurations is {x ∈ Xn|f(x) = 1}
I Thus, Z equals the number of valid configurations

I P (x) is uniform over the set of valid configurations

Capacity Achieving Codes: There and Back Again 20 / 65

Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation

Capacity Achieving Codes: There and Back Again 21 / 65

Marginalization via Belief Propagation

I Factor Graph G = (V ∪ F,E)

I Variable nodes V , Factor nodes F

I Edges: (i, a) ∈ E ⊆ V × F
I F (i)/V (a) = set of neighbors for node-i/a

I Messages: µ
(t)
i→a(xi) and µ̂

(t)
a→i(xi)

I variable-i to factor-a message

µ̂
(t)
b1→i(xi)

µ̂
(t)
b2→i(xi)

µ̂
(t)
b3→i(xi)

i µ
(t+1)
i→a (xi) =

∏
b∈F (i)\a

µ̂
(t)
b→i(xi)

I factor-a to variable-i message

µ
(t)
j1→a(xj1)

µ
(t)
j2→a(xj2)

µ
(t)
j3→a(xj3)

a µ̂
(t)
a→i(xi) =

∑
xV (a)\i

fa(xV (a))
∏

j∈V (a)\i

µ
(t)
j→a(xj)

I variable-i marginal

µ̂
(t)
b1→i(xi)

µ̂
(t)
b2→i(xi)

µ̂
(t)
b3→i(xi)

i µ̂
(t)
b4→i(xi)

µ
(t+1)
i (xi) =

∏
b∈F (i)

µ̂
(t)
b→i(xi)

Capacity Achieving Codes: There and Back Again 21 / 65

Marginalization via Belief Propagation

I Factor Graph G = (V ∪ F,E)

I Variable nodes V , Factor nodes F

I Edges: (i, a) ∈ E ⊆ V × F
I F (i)/V (a) = set of neighbors for node-i/a

I Messages: µ
(t)
i→a(xi) and µ̂

(t)
a→i(xi)

I variable-i to factor-a message

µ̂
(t)
b1→i(xi)

µ̂
(t)
b2→i(xi)

µ̂
(t)
b3→i(xi)

i µ
(t+1)
i→a (xi) =

∏
b∈F (i)\a

µ̂
(t)
b→i(xi)

I factor-a to variable-i message

µ
(t)
j1→a(xj1)

µ
(t)
j2→a(xj2)

µ
(t)
j3→a(xj3)

a µ̂
(t)
a→i(xi) =

∑
xV (a)\i

fa(xV (a))
∏

j∈V (a)\i

µ
(t)
j→a(xj)

I variable-i marginal

µ̂
(t)
b1→i(xi)

µ̂
(t)
b2→i(xi)

µ̂
(t)
b3→i(xi)

i µ̂
(t)
b4→i(xi)

µ
(t+1)
i (xi) =

∏
b∈F (i)

µ̂
(t)
b→i(xi)

Capacity Achieving Codes: There and Back Again 21 / 65

Marginalization via Belief Propagation

I Factor Graph G = (V ∪ F,E)

I Variable nodes V , Factor nodes F

I Edges: (i, a) ∈ E ⊆ V × F
I F (i)/V (a) = set of neighbors for node-i/a

I Messages: µ
(t)
i→a(xi) and µ̂

(t)
a→i(xi)

I variable-i to factor-a message

µ̂
(t)
b1→i(xi)

µ̂
(t)
b2→i(xi)

µ̂
(t)
b3→i(xi)

i µ
(t+1)
i→a (xi) =

∏
b∈F (i)\a

µ̂
(t)
b→i(xi)

I factor-a to variable-i message

µ
(t)
j1→a(xj1)

µ
(t)
j2→a(xj2)

µ
(t)
j3→a(xj3)

a µ̂
(t)
a→i(xi) =

∑
xV (a)\i

fa(xV (a))
∏

j∈V (a)\i

µ
(t)
j→a(xj)

I variable-i marginal

µ̂
(t)
b1→i(xi)

µ̂
(t)
b2→i(xi)

µ̂
(t)
b3→i(xi)

i µ̂
(t)
b4→i(xi)

µ
(t+1)
i (xi) =

∏
b∈F (i)

µ̂
(t)
b→i(xi)

Capacity Achieving Codes: There and Back Again 21 / 65

Marginalization via Belief Propagation

I Factor Graph G = (V ∪ F,E)

I Variable nodes V , Factor nodes F

I Edges: (i, a) ∈ E ⊆ V × F
I F (i)/V (a) = set of neighbors for node-i/a

I Messages: µ
(t)
i→a(xi) and µ̂

(t)
a→i(xi)

I variable-i to factor-a message

µ̂
(t)
b1→i(xi)

µ̂
(t)
b2→i(xi)

µ̂
(t)
b3→i(xi)

i µ
(t+1)
i→a (xi) =

∏
b∈F (i)\a

µ̂
(t)
b→i(xi)

I factor-a to variable-i message

µ
(t)
j1→a(xj1)

µ
(t)
j2→a(xj2)

µ
(t)
j3→a(xj3)

a µ̂
(t)
a→i(xi) =

∑
xV (a)\i

fa(xV (a))
∏

j∈V (a)\i

µ
(t)
j→a(xj)

I variable-i marginal

µ̂
(t)
b1→i(xi)

µ̂
(t)
b2→i(xi)

µ̂
(t)
b3→i(xi)

i µ̂
(t)
b4→i(xi)

µ
(t+1)
i (xi) =

∏
b∈F (i)

µ̂
(t)
b→i(xi)

Capacity Achieving Codes: There and Back Again 22 / 65

Marginalization via Belief Propagation: Example

iteration 1: variable to factor

µ
(1)
i→a(xi) = 1

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5
µ

(1
)

1→
1

µ (1)1→
2

µ
(1
)

2
→

1

µ (1
)3→

1 µ
(1
)

4
→

2

µ (1
)6→

2

µ
(1
)

4
→

3

µ (1
)4→

4

µ
(1

)
5→

4

Capacity Achieving Codes: There and Back Again 22 / 65

Marginalization via Belief Propagation: Example

iteration 1: variable to factor

µ
(1)
i→a(xi) = 1

iteration 1: factor to variable

µ̂
(1)
4→4(x4) =

∑
x5

f4(x4, x5)µ
(1)
5→4(xi)

=
∑
x5

f4(x4, x5)

µ̂
(1)
3→4(x4) = f3(x4)

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

µ̂
(1
)

3
→

4

µ̂ (1
)4→

4

µ
(1

)
5→

4

Capacity Achieving Codes: There and Back Again 22 / 65

Marginalization via Belief Propagation: Example

iteration 1: factor to variable

µ̂
(1)
4→4(x4) =

∑
x5

f4(x4, x5)µ
(1)
5→4(xi)

=
∑
x5

f4(x4, x5)

µ̂
(1)
3→4(x4) = f3(x4)

iteration 2: variable to factor

µ
(2)
4→2(x4) = µ̂

(1)
4→4(x4)µ̂

(1)
3→4(x4)

= f3(x4)
∑
x5

f4(x4, x5)

µ
(2)
6→2(x6) = 1

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

µ
(2
)

4
→

2

µ (2
)6→

2

µ̂
(1
)

3
→

4

µ̂ (1
)4→

4

µ
(1

)
5→

4

Capacity Achieving Codes: There and Back Again 22 / 65

Marginalization via Belief Propagation: Example

iteration 2: variable to factor

µ
(2)
4→2(x4) = µ̂

(1)
4→4(x4)µ̂

(1)
3→4(x4)

= f3(x4)
∑
x5

f4(x4, x5)

µ
(2)
6→2(x6) = 1

iteration 2: factor to variable

µ̂
(2)
2→1(x1) =

∑
x4,x6

f2(x1, x4, x6)µ
(2)
4→2(x4)µ

(2)
6→2(x6)

=
∑
x4,x6

f2(x1, x4, x6)f3(x4)
∑
x5

f4(x4, x5)

= f ′′2 (x1)

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

µ̂ (2)2→
1

µ
(2
)

4
→

2

µ (2
)6→

2

µ̂
(1
)

3
→

4

µ̂ (1
)4→

4

µ
(1

)
5→

4

Capacity Achieving Codes: There and Back Again 22 / 65

Marginalization via Belief Propagation: Example

iteration 2: variable marginal

µ
(3)
1 (x1) = µ̂

(2)
1→1(x1)µ̂

(2)
2→1(x1)

= f ′′1 (x1)f ′′2 (x2)

Same answer as peeling but from
a distributed parallel algorithm

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5
µ̂

(2
)

1→
1

µ̂ (2)2→
1

µ
(2
)

2
→

1

µ (2
)3→

1 µ
(2
)

4
→

2

µ (2
)6→

2

µ̂
(1
)

3
→

4

µ̂ (1
)4→

4

µ
(1

)
5→

4

Capacity Achieving Codes: There and Back Again 23 / 65

Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation

Capacity Achieving Codes: There and Back Again 24 / 65

Sudoku: A Factor Graph for the Masses

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

rows are permutations of {1, 2, . . . , 9}

columns are permutations of {1, 2, . . . , 9}
subblocks are permutations of {1, 2, . . . , 9}

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99

implied factor graph has
81 variable and 27 factor nodes

f(x) =

(
9∏
i=1

fσ(xi∗)

) 9∏
j=1

fσ(x∗j)

(9∏
k=1

fσ(xB(k))

) ∏
(i,j)∈O

I(xij = yij)

Capacity Achieving Codes: There and Back Again 24 / 65

Sudoku: A Factor Graph for the Masses

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

rows are permutations of {1, 2, . . . , 9}
columns are permutations of {1, 2, . . . , 9}

subblocks are permutations of {1, 2, . . . , 9}

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99

implied factor graph has
81 variable and 27 factor nodes

f(x) =

(
9∏
i=1

fσ(xi∗)

) 9∏
j=1

fσ(x∗j)

(9∏
k=1

fσ(xB(k))

) ∏
(i,j)∈O

I(xij = yij)

Capacity Achieving Codes: There and Back Again 24 / 65

Sudoku: A Factor Graph for the Masses

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

rows are permutations of {1, 2, . . . , 9}
columns are permutations of {1, 2, . . . , 9}

subblocks are permutations of {1, 2, . . . , 9}

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99

implied factor graph has
81 variable and 27 factor nodes

f(x) =

(
9∏
i=1

fσ(xi∗)

) 9∏
j=1

fσ(x∗j)

(9∏
k=1

fσ(xB(k))

) ∏
(i,j)∈O

I(xij = yij)

Capacity Achieving Codes: There and Back Again 24 / 65

Sudoku: A Factor Graph for the Masses

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

rows are permutations of {1, 2, . . . , 9}
columns are permutations of {1, 2, . . . , 9}

subblocks are permutations of {1, 2, . . . , 9}

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99

implied factor graph has
81 variable and 27 factor nodes

f(x) =

(
9∏
i=1

fσ(xi∗)

) 9∏
j=1

fσ(x∗j)

(9∏
k=1

fσ(xB(k))

) ∏
(i,j)∈O

I(xij = yij)

Capacity Achieving Codes: There and Back Again 25 / 65

Solving Sudoku with a Factor Graph

I Consider any constraint satisfaction problem with observed entries

I One can write f(x) as the product of indicator functions

I Some factors force x to be valid (i.e., satisfy constraints)

I Other factors force x to be compatible with observed values

I Summing over x counts the # of valid compatible sequences

I Low-complexity peeling solution

I Set elements of x one at a time

I Each step looks for i ∈ [n] and x′ ∈ X such that:

I For currently set variables, f(x) = 0 for all xi ∈ X \ x′

I Sudoku’s unique solution implies that xi = x′ correct

I Fix xi = x′ and repeat until all values fixed

Capacity Achieving Codes: There and Back Again 25 / 65

Solving Sudoku with a Factor Graph

I Consider any constraint satisfaction problem with observed entries

I One can write f(x) as the product of indicator functions

I Some factors force x to be valid (i.e., satisfy constraints)

I Other factors force x to be compatible with observed values

I Summing over x counts the # of valid compatible sequences

I Low-complexity peeling solution

I Set elements of x one at a time

I Each step looks for i ∈ [n] and x′ ∈ X such that:

I For currently set variables, f(x) = 0 for all xi ∈ X \ x′

I Sudoku’s unique solution implies that xi = x′ correct

I Fix xi = x′ and repeat until all values fixed

Capacity Achieving Codes: There and Back Again 26 / 65

Boolean Satisfiability: K-SAT

I One instance of 3-SAT is given, for example, by

f(x) = (x1 ∨ x3 ∨ x7) ∧ (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x4 ∨ x6) .

I In the FG, clause a ∈ [m] is enforced by the function fa

I Marginalization allows uniform sampling from valid set

I For i = 1, 2, . . . , n, fix xj for j < i and compute marginal

gi(xi) =
1

Zi

∑
xi+1,...,xn

f(x) = P (Xi = xi|X1 = x1, . . . , Xi−1 = xi−1)

I Then, sample xi ∼ gi(·) and repeat

I This algorithm has low complexity if factor graph forms a tree

I If not a tree, use approximate marginal from belief propagation

I This is related to BP-guided decimation [MM09]

Capacity Achieving Codes: There and Back Again 26 / 65

Boolean Satisfiability: K-SAT

I One instance of 3-SAT is given, for example, by

f(x) = (x1 ∨ x3 ∨ x7) ∧ (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x4 ∨ x6) .

I In the FG, clause a ∈ [m] is enforced by the function fa

I Marginalization allows uniform sampling from valid set

I For i = 1, 2, . . . , n, fix xj for j < i and compute marginal

gi(xi) =
1

Zi

∑
xi+1,...,xn

f(x) = P (Xi = xi|X1 = x1, . . . , Xi−1 = xi−1)

I Then, sample xi ∼ gi(·) and repeat

I This algorithm has low complexity if factor graph forms a tree

I If not a tree, use approximate marginal from belief propagation

I This is related to BP-guided decimation [MM09]

Capacity Achieving Codes: There and Back Again 26 / 65

Boolean Satisfiability: K-SAT

I One instance of 3-SAT is given, for example, by

f(x) = (x1 ∨ x3 ∨ x7) ∧ (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x4 ∨ x6) .

I In the FG, clause a ∈ [m] is enforced by the function fa

I Marginalization allows uniform sampling from valid set

I For i = 1, 2, . . . , n, fix xj for j < i and compute marginal

gi(xi) =
1

Zi

∑
xi+1,...,xn

f(x) = P (Xi = xi|X1 = x1, . . . , Xi−1 = xi−1)

I Then, sample xi ∼ gi(·) and repeat

I This algorithm has low complexity if factor graph forms a tree

I If not a tree, use approximate marginal from belief propagation

I This is related to BP-guided decimation [MM09]

Capacity Achieving Codes: There and Back Again 27 / 65

Low-Density Parity-Check (LDPC) Codes

parity
checks

permutation

code bits

I Linear codes defined by xHT = 0 for all c.w. x ∈ C ⊂ {0, 1}n

I H is an m× n sparse parity-check matrix for the code

I Code bits and parity checks associated with cols/rows of H

I Factor graph: H is the biadjacency matrix for variable/factor nodes

I Ensemble defined by configuration model for random graphs

I Checks define factors: feven(xd1) = I(x1 ⊕ · · · ⊕ xd = 0)

I Let x∂a be the subvector of variables in the a-th check and

f(x1, . . . , xn) =

(
m∏
a=1

feven(x∂a)

)(
n∏
i=1

PY |X(yi|xi)

)

Capacity Achieving Codes: There and Back Again 27 / 65

Low-Density Parity-Check (LDPC) Codes

parity
checks

permutation

code bits

I Linear codes defined by xHT = 0 for all c.w. x ∈ C ⊂ {0, 1}n

I H is an m× n sparse parity-check matrix for the code

I Code bits and parity checks associated with cols/rows of H

I Factor graph: H is the biadjacency matrix for variable/factor nodes

I Ensemble defined by configuration model for random graphs

I Checks define factors: feven(xd1) = I(x1 ⊕ · · · ⊕ xd = 0)

I Let x∂a be the subvector of variables in the a-th check and

f(x1, . . . , xn) =

(
m∏
a=1

feven(x∂a)

)(
n∏
i=1

PY |X(yi|xi)

)

Capacity Achieving Codes: There and Back Again 28 / 65

A Little History

Robert Gallager introduced LDPC codes in 1962 paper

Judea Pearl defined general belief-propagation in 1986 paper

Capacity Achieving Codes: There and Back Again 29 / 65

Simple Message-Passing Decoding for the BEC

I Constraint nodes define the valid patterns

I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)

I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC

I Bits pass an erasure only if all other inputs are erased
I Checks pass the correct value only if all other inputs are correct

?

?

1

0

Capacity Achieving Codes: There and Back Again 29 / 65

Simple Message-Passing Decoding for the BEC

I Constraint nodes define the valid patterns

I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)

I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC

I Bits pass an erasure only if all other inputs are erased
I Checks pass the correct value only if all other inputs are correct

?

?

?

?

1

0

1

0

Capacity Achieving Codes: There and Back Again 29 / 65

Simple Message-Passing Decoding for the BEC

I Constraint nodes define the valid patterns

I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)

I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC

I Bits pass an erasure only if all other inputs are erased
I Checks pass the correct value only if all other inputs are correct

1

?

?

1

1

0

1

0

Capacity Achieving Codes: There and Back Again 29 / 65

Simple Message-Passing Decoding for the BEC

I Constraint nodes define the valid patterns

I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)

I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC

I Bits pass an erasure only if all other inputs are erased
I Checks pass the correct value only if all other inputs are correct

1

?

?

1

1

0

?

?

Capacity Achieving Codes: There and Back Again 30 / 65

Computation Graph and Density Evolution

x1 = ε

y1 = 1−(1−x1)3
x2 = εy21

y2 = 1−(1−x2)3
x̃3 = εy32

I Computation graph for a (3,4)-regular LDPC code

I Illustrates decoding from the perspective of a single bit-node

I For long random LDPC codes, the graph is typically a tree

I Allows density evolution to track message erasure probability

I If x/y are erasure prob. of bit/check output messages, then

εy

y

y

εy3

x

x

x

1− (1− x)3

Capacity Achieving Codes: There and Back Again 30 / 65

Computation Graph and Density Evolution

x1 = ε

y1 = 1−(1−x1)3
x2 = εy21

y2 = 1−(1−x2)3
x̃3 = εy32

I Computation graph for a (3,4)-regular LDPC code

I Illustrates decoding from the perspective of a single bit-node

I For long random LDPC codes, the graph is typically a tree

I Allows density evolution to track message erasure probability

I If x/y are erasure prob. of bit/check output messages, then

εy

y

y

εy3

x

x

x

1− (1− x)3

Capacity Achieving Codes: There and Back Again 30 / 65

Computation Graph and Density Evolution

x1 = 0.600

y1 = 1−(1−x1)3
x2 = εy21

y2 = 1−(1−x2)3
x̃3 = εy32

I Computation graph for a (3,4)-regular LDPC code

I Illustrates decoding from the perspective of a single bit-node

I For long random LDPC codes, the graph is typically a tree

I Allows density evolution to track message erasure probability

I If x/y are erasure prob. of bit/check output messages, then

εy

y

y

εy3

x

x

x

1− (1− x)3

Capacity Achieving Codes: There and Back Again 30 / 65

Computation Graph and Density Evolution

x1 = 0.600

y1 = 0.936

x2 = εy21

y2 = 1−(1−x2)3
x̃3 = εy32

I Computation graph for a (3,4)-regular LDPC code

I Illustrates decoding from the perspective of a single bit-node

I For long random LDPC codes, the graph is typically a tree

I Allows density evolution to track message erasure probability

I If x/y are erasure prob. of bit/check output messages, then

εy

y

y

εy3

x

x

x

1− (1− x)3

Capacity Achieving Codes: There and Back Again 30 / 65

Computation Graph and Density Evolution

x1 = 0.600

y1 = 0.936

x2 = 0.526

y2 = 1−(1−x2)3
x̃3 = εy32

I Computation graph for a (3,4)-regular LDPC code

I Illustrates decoding from the perspective of a single bit-node

I For long random LDPC codes, the graph is typically a tree

I Allows density evolution to track message erasure probability

I If x/y are erasure prob. of bit/check output messages, then

εy

y

y

εy3

x

x

x

1− (1− x)3

Capacity Achieving Codes: There and Back Again 30 / 65

Computation Graph and Density Evolution

x1 = 0.600

y1 = 0.936

x2 = 0.526

y2 = 1−(1−x2)3y2 = 0.894

x̃3 = εy32

I Computation graph for a (3,4)-regular LDPC code

I Illustrates decoding from the perspective of a single bit-node

I For long random LDPC codes, the graph is typically a tree

I Allows density evolution to track message erasure probability

I If x/y are erasure prob. of bit/check output messages, then

εy

y

y

εy3

x

x

x

1− (1− x)3

Capacity Achieving Codes: There and Back Again 30 / 65

Computation Graph and Density Evolution

x1 = 0.600

y1 = 0.936

x2 = 0.526

y2 = 1−(1−x2)3y2 = 0.894

x̃3 = εy32x̃3 = 0.429

I Computation graph for a (3,4)-regular LDPC code

I Illustrates decoding from the perspective of a single bit-node

I For long random LDPC codes, the graph is typically a tree

I Allows density evolution to track message erasure probability

I If x/y are erasure prob. of bit/check output messages, then

εy

y

y

εy3

x

x

x

1− (1− x)3

Capacity Achieving Codes: There and Back Again 31 / 65

Density Evolution (DE) for LDPC Codes

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

x`

x
`+

1
(3,4) LDPC Code with ε = 0.6

Density evolution for a
(3, 4)-regular LDPC code:

x`+1 = ε
(
1− (1− x`)3

)2
Decoding Thresholds:

εBP ≈ 0.647

εMAP ≈ 0.746

εSh = 0.750

I Binary erasure channel (BEC) with erasure prob. ε

I DE tracks bit-to-check msg erasure rate x` after ` iterations

I Defines noise threshold εBP for the large system limit

I Easily computed numerically for given code ensemble

Capacity Achieving Codes: There and Back Again 32 / 65

EXtrinsic Information Transfer (EXIT) Curves

I Introduced by ten Brink in 1999 to understand iterative decoding

I For the BEC, the MAP EXIT curve is

hMAP(ε) ,
1

n

n∑
i=1

H(Xi|Y ∼i(ε))

I EXIT Area Theorem [ABK04]

1

n
H(X|Y (ε)) =

∫ ε

0

hMAP(δ)dδ

I BP EXIT curve

hBP(ε) ,
1

n

n∑
i=1

H
(
Xi|ΦBP

i (Y ∼i(ε))
)

I where ΦBP
i (Z) is the BP estimate of Xi given Z

I Data processing inequality: hBP(ε) ≥ hMAP(ε)

Capacity Achieving Codes: There and Back Again 32 / 65

EXtrinsic Information Transfer (EXIT) Curves

I Introduced by ten Brink in 1999 to understand iterative decoding

I For the BEC, the MAP EXIT curve is

hMAP(ε) ,
1

n

n∑
i=1

H(Xi|Y ∼i(ε))

I EXIT Area Theorem [ABK04]

1

n
H(X|Y (ε)) =

∫ ε

0

hMAP(δ)dδ

I BP EXIT curve

hBP(ε) ,
1

n

n∑
i=1

H
(
Xi|ΦBP

i (Y ∼i(ε))
)

I where ΦBP
i (Z) is the BP estimate of Xi given Z

I Data processing inequality: hBP(ε) ≥ hMAP(ε)

Capacity Achieving Codes: There and Back Again 32 / 65

EXtrinsic Information Transfer (EXIT) Curves

I Introduced by ten Brink in 1999 to understand iterative decoding

I For the BEC, the MAP EXIT curve is

hMAP(ε) ,
1

n

n∑
i=1

H(Xi|Y ∼i(ε))

I EXIT Area Theorem [ABK04]

1

n
H(X|Y (ε)) =

∫ ε

0

hMAP(δ)dδ

I BP EXIT curve

hBP(ε) ,
1

n

n∑
i=1

H
(
Xi|ΦBP

i (Y ∼i(ε))
)

I where ΦBP
i (Z) is the BP estimate of Xi given Z

I Data processing inequality: hBP(ε) ≥ hMAP(ε)

Capacity Achieving Codes: There and Back Again 33 / 65

EXtrinsic Information Transfer (EXIT) Curves

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ε

h
B
P

(ε
)

I (3,4)-regular LDPC code

I Codeword (X1, . . . , Xn)
I Received (Y1, . . . , Yn)

I BP EXIT curve via DE

I This code: hBP(ε) = (x∞(ε))
3

I 0 below BP threshold 0.647

I MAP EXIT curve is extrinsic en-
tropy H(Xi|Y ∼i) vs. channel ε

I 0 below MAP threshold 0.746
I Area under curve equals rate R
I Upper bounded by BP EXIT

I MAP threshold upper bound εMAP

I ε s.t. area under BP EXIT is R

Capacity Achieving Codes: There and Back Again 33 / 65

EXtrinsic Information Transfer (EXIT) Curves

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ε

h
B
P

(ε
)

I (3,4)-regular LDPC code

I Codeword (X1, . . . , Xn)
I Received (Y1, . . . , Yn)

I BP EXIT curve via DE

I This code: hBP(ε) = (x∞(ε))
3

I 0 below BP threshold 0.647

I MAP EXIT curve is extrinsic en-
tropy H(Xi|Y ∼i) vs. channel ε

I 0 below MAP threshold 0.746
I Area under curve equals rate R
I Upper bounded by BP EXIT

I MAP threshold upper bound εMAP

I ε s.t. area under BP EXIT is R

Capacity Achieving Codes: There and Back Again 33 / 65

EXtrinsic Information Transfer (EXIT) Curves

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ε

h
B
P

(ε
)

I (3,4)-regular LDPC code

I Codeword (X1, . . . , Xn)
I Received (Y1, . . . , Yn)

I BP EXIT curve via DE

I This code: hBP(ε) = (x∞(ε))
3

I 0 below BP threshold 0.647

I MAP EXIT curve is extrinsic en-
tropy H(Xi|Y ∼i) vs. channel ε

I 0 below MAP threshold 0.746
I Area under curve equals rate R
I Upper bounded by BP EXIT

I MAP threshold upper bound εMAP

I ε s.t. area under BP EXIT is R

Capacity Achieving Codes: There and Back Again 33 / 65

EXtrinsic Information Transfer (EXIT) Curves

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ε

h
B
P

(ε
)

I (3,4)-regular LDPC code

I Codeword (X1, . . . , Xn)
I Received (Y1, . . . , Yn)

I BP EXIT curve via DE

I This code: hBP(ε) = (x∞(ε))
3

I 0 below BP threshold 0.647

I MAP EXIT curve is extrinsic en-
tropy H(Xi|Y ∼i) vs. channel ε

I 0 below MAP threshold 0.746
I Area under curve equals rate R
I Upper bounded by BP EXIT

I MAP threshold upper bound εMAP

I ε s.t. area under BP EXIT is R

Capacity Achieving Codes: There and Back Again 34 / 65

Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation

Capacity Achieving Codes: There and Back Again 35 / 65

Properties of the MAP EXIT Curve

I For linear codes, the recovery of Xi from Y = y

I is independent of the transmitted codeword X

I only depends on erasure indicator zi = 1{?}(yi)

I is determined by whether H(Xi|Z = z) is 0 or 1

I The MAP bit-erasure rate Pb(ε) satisfies

Pb(ε) = P(Yi = ?)H(Xi|Y , Yi = ?) = εhMAP(ε)

I A sequence of rate-R codes achieves capacity iff

I Pb(ε)→ 0 for all ε < 1−R
I hMAP(ε)→ 0 for all ε < 1−R
I hMAP(ε) transitions sharply from 0 to 1

Capacity Achieving Codes: There and Back Again 35 / 65

Properties of the MAP EXIT Curve

I For linear codes, the recovery of Xi from Y = y

I is independent of the transmitted codeword X

I only depends on erasure indicator zi = 1{?}(yi)

I is determined by whether H(Xi|Z = z) is 0 or 1

I The MAP bit-erasure rate Pb(ε) satisfies

Pb(ε) = P(Yi = ?)H(Xi|Y , Yi = ?) = εhMAP(ε)

I A sequence of rate-R codes achieves capacity iff

I Pb(ε)→ 0 for all ε < 1−R
I hMAP(ε)→ 0 for all ε < 1−R
I hMAP(ε) transitions sharply from 0 to 1

Capacity Achieving Codes: There and Back Again 35 / 65

Properties of the MAP EXIT Curve

I For linear codes, the recovery of Xi from Y = y

I is independent of the transmitted codeword X

I only depends on erasure indicator zi = 1{?}(yi)

I is determined by whether H(Xi|Z = z) is 0 or 1

I The MAP bit-erasure rate Pb(ε) satisfies

Pb(ε) = P(Yi = ?)H(Xi|Y , Yi = ?) = εhMAP(ε)

I A sequence of rate-R codes achieves capacity iff

I Pb(ε)→ 0 for all ε < 1−R
I hMAP(ε)→ 0 for all ε < 1−R
I hMAP(ε) transitions sharply from 0 to 1

Capacity Achieving Codes: There and Back Again 36 / 65

The MAP EXIT Curve of a Capacity-Achieving Code

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Erasure Probability

M
A

P
E

X
IT

F
u

n
ct

io
n

n = 23

I For δ>0, transition width is ε-range over which δ≤hMAP(ε)≤1− δ

I Area Theorem implies sharp transition iff capacity achieving

Capacity Achieving Codes: There and Back Again 36 / 65

The MAP EXIT Curve of a Capacity-Achieving Code

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Erasure Probability

M
A

P
E

X
IT

F
u

n
ct

io
n

n = 23

I For δ>0, transition width is ε-range over which δ≤hMAP(ε)≤1− δ
I Area Theorem implies sharp transition iff capacity achieving

Capacity Achieving Codes: There and Back Again 36 / 65

The MAP EXIT Curve of a Capacity-Achieving Code

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Erasure Probability

M
A

P
E

X
IT

F
u

n
ct

io
n

n = 23

n = 25

I For δ>0, transition width is ε-range over which δ≤hMAP(ε)≤1− δ
I Area Theorem implies sharp transition iff capacity achieving

Capacity Achieving Codes: There and Back Again 36 / 65

The MAP EXIT Curve of a Capacity-Achieving Code

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Erasure Probability

M
A

P
E

X
IT

F
u

n
ct

io
n

n = 23

n = 25

n = 27

I For δ>0, transition width is ε-range over which δ≤hMAP(ε)≤1− δ
I Area Theorem implies sharp transition iff capacity achieving

Capacity Achieving Codes: There and Back Again 36 / 65

The MAP EXIT Curve of a Capacity-Achieving Code

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Erasure Probability

M
A

P
E

X
IT

F
u

n
ct

io
n

n = 23

n = 25

n = 27

n = 29

I For δ>0, transition width is ε-range over which δ≤hMAP(ε)≤1− δ
I Area Theorem implies sharp transition iff capacity achieving

Capacity Achieving Codes: There and Back Again 37 / 65

EXIT Curves and Sharp Transitions

I Consider any monotone boolean function f : {0, 1}n−1 → {0, 1}

I Define its symmetry group G to be

G =
{
π ∈ Sn−1 | f(π(z)) = f(z)∀z ∈ {0, 1}n−1

}
I Let Zi ∈ {0, 1} be i.i.d. with P(Zi = 1) = ε and define

h(ε) , E [f(Z1, . . . , Zn−1)]

I If G is transitive, then h(ε) has transition width O
(

1
lnn

)∗
∀i, j ∈ {1, 2, . . . , n− 1},∃π ∈ G s.t. π(i) = j

I When do EXIT curves have a sharp transition? [KKMPSU15]

I If the code’s permutation group is doubly transitive!

I For example, Reed-Muller and prim. narrow-sense BCH codes

∗ Friedgut-Kalai’96: “Every monotone graph property has a sharp threshold”

Capacity Achieving Codes: There and Back Again 37 / 65

EXIT Curves and Sharp Transitions

I Consider any monotone boolean function f : {0, 1}n−1 → {0, 1}
I Define its symmetry group G to be

G =
{
π ∈ Sn−1 | f(π(z)) = f(z)∀z ∈ {0, 1}n−1

}

I Let Zi ∈ {0, 1} be i.i.d. with P(Zi = 1) = ε and define

h(ε) , E [f(Z1, . . . , Zn−1)]

I If G is transitive, then h(ε) has transition width O
(

1
lnn

)∗
∀i, j ∈ {1, 2, . . . , n− 1},∃π ∈ G s.t. π(i) = j

I When do EXIT curves have a sharp transition? [KKMPSU15]

I If the code’s permutation group is doubly transitive!

I For example, Reed-Muller and prim. narrow-sense BCH codes

∗ Friedgut-Kalai’96: “Every monotone graph property has a sharp threshold”

Capacity Achieving Codes: There and Back Again 37 / 65

EXIT Curves and Sharp Transitions

I Consider any monotone boolean function f : {0, 1}n−1 → {0, 1}
I Define its symmetry group G to be

G =
{
π ∈ Sn−1 | f(π(z)) = f(z)∀z ∈ {0, 1}n−1

}
I Let Zi ∈ {0, 1} be i.i.d. with P(Zi = 1) = ε and define

h(ε) , E [f(Z1, . . . , Zn−1)]

I If G is transitive, then h(ε) has transition width O
(

1
lnn

)∗
∀i, j ∈ {1, 2, . . . , n− 1},∃π ∈ G s.t. π(i) = j

I When do EXIT curves have a sharp transition? [KKMPSU15]

I If the code’s permutation group is doubly transitive!

I For example, Reed-Muller and prim. narrow-sense BCH codes

∗ Friedgut-Kalai’96: “Every monotone graph property has a sharp threshold”

Capacity Achieving Codes: There and Back Again 37 / 65

EXIT Curves and Sharp Transitions

I Consider any monotone boolean function f : {0, 1}n−1 → {0, 1}
I Define its symmetry group G to be

G =
{
π ∈ Sn−1 | f(π(z)) = f(z)∀z ∈ {0, 1}n−1

}
I Let Zi ∈ {0, 1} be i.i.d. with P(Zi = 1) = ε and define

h(ε) , E [f(Z1, . . . , Zn−1)]

I If G is transitive, then h(ε) has transition width O
(

1
lnn

)∗
∀i, j ∈ {1, 2, . . . , n− 1},∃π ∈ G s.t. π(i) = j

I When do EXIT curves have a sharp transition? [KKMPSU15]

I If the code’s permutation group is doubly transitive!

I For example, Reed-Muller and prim. narrow-sense BCH codes

∗ Friedgut-Kalai’96: “Every monotone graph property has a sharp threshold”

Capacity Achieving Codes: There and Back Again 37 / 65

EXIT Curves and Sharp Transitions

I Consider any monotone boolean function f : {0, 1}n−1 → {0, 1}
I Define its symmetry group G to be

G =
{
π ∈ Sn−1 | f(π(z)) = f(z)∀z ∈ {0, 1}n−1

}
I Let Zi ∈ {0, 1} be i.i.d. with P(Zi = 1) = ε and define

h(ε) , E [f(Z1, . . . , Zn−1)]

I If G is transitive, then h(ε) has transition width O
(

1
lnn

)∗
∀i, j ∈ {1, 2, . . . , n− 1},∃π ∈ G s.t. π(i) = j

I When do EXIT curves have a sharp transition? [KKMPSU15]

I If the code’s permutation group is doubly transitive!

I For example, Reed-Muller and prim. narrow-sense BCH codes

∗ Friedgut-Kalai’96: “Every monotone graph property has a sharp threshold”

Capacity Achieving Codes: There and Back Again 38 / 65

Summary and Open Problems

I Gallager’s 1960 thesis already contains most of the tools necessary
to achieve capacity in practice

I But, he focuses mainly on the BSC

I Had he attacked the BEC, practical capacity-achieving codes
might have been introduced years earlier

I The first deterministic sequence of capacity-achieving binary codes
for the BEC (under MAP decoding) was defined in 1954!

I Sequences of Reed-Muller codes achieve capacity on the BEC

I But, we didn’t know this until 2015!

I Open problems

I Generalize the Reed-Muller result to have weaker conditions
and/or apply to more general channels/problems

I Find a purely information-theoretic proof of the Reed-Muller
result for the BEC

Capacity Achieving Codes: There and Back Again 38 / 65

Summary and Open Problems

I Gallager’s 1960 thesis already contains most of the tools necessary
to achieve capacity in practice

I But, he focuses mainly on the BSC

I Had he attacked the BEC, practical capacity-achieving codes
might have been introduced years earlier

I The first deterministic sequence of capacity-achieving binary codes
for the BEC (under MAP decoding) was defined in 1954!

I Sequences of Reed-Muller codes achieve capacity on the BEC

I But, we didn’t know this until 2015!

I Open problems

I Generalize the Reed-Muller result to have weaker conditions
and/or apply to more general channels/problems

I Find a purely information-theoretic proof of the Reed-Muller
result for the BEC

Capacity Achieving Codes: There and Back Again 38 / 65

Summary and Open Problems

I Gallager’s 1960 thesis already contains most of the tools necessary
to achieve capacity in practice

I But, he focuses mainly on the BSC

I Had he attacked the BEC, practical capacity-achieving codes
might have been introduced years earlier

I The first deterministic sequence of capacity-achieving binary codes
for the BEC (under MAP decoding) was defined in 1954!

I Sequences of Reed-Muller codes achieve capacity on the BEC

I But, we didn’t know this until 2015!

I Open problems

I Generalize the Reed-Muller result to have weaker conditions
and/or apply to more general channels/problems

I Find a purely information-theoretic proof of the Reed-Muller
result for the BEC

Capacity Achieving Codes: There and Back Again 39 / 65

Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation

Capacity Achieving Codes: There and Back Again 40 / 65

What is Spatial Coupling?

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

.

1 3 5

2 9 4

8 7 6

6

7

8

5

3

1

4

9

2

4

6

5

3

1

8

7

9

2

2

3

5

8

6 3

1

6

4

7

4

3 8

4 9

6 2

9

4

3

7

2

1

I Spatially-Coupled Factor Graphs

I Variable nodes have a natural global orientation

I Boundaries help variables to be recovered in an ordered fashion

Capacity Achieving Codes: There and Back Again 40 / 65

What is Spatial Coupling?

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

.

1 3 5

2 9 4

8 7 6

6

7

8

5

3

1

4

9

2

4

6

5

3

1

8

7

9

2

2

3

5

8

6 3

1

6

4

7

4

3 8

4 9

6 2

9

4

3

7

2

1

I Spatially-Coupled Factor Graphs

I Variable nodes have a natural global orientation

I Boundaries help variables to be recovered in an ordered fashion

Capacity Achieving Codes: There and Back Again 41 / 65

Spatially-Coupled LDPC Codes: (l, r, L, w) Ensemble

...

...

π0

π′0

−L −2 −1 0 1 2 L... ...

...

...

π−L

π′−L

...

...

π−2

π′−2

...

...

π−1

π′−1

...

...

π1

π′1

...

...

π2

π′2

...

...

πL

π′L

...

...

...

...

l = 3

w = 3

r = 4

−L−2 −L−1 L+1 L+2

π−L−2

...

π−L−1

...

πL+1

...

πL+2

...

π′L+1

...

π′L+2

...

I Historical Notes

I LDPC convolutional codes introduced by FZ in 1999

I Shown to have near optimal noise thresholds by LSZC in 2005

I (l, r, L, w) ensemble proven to achieve capacity by KRU in 2011

Capacity Achieving Codes: There and Back Again 41 / 65

Spatially-Coupled LDPC Codes: (l, r, L, w) Ensemble

...

...

π0

π′0

−L −2 −1 0 1 2 L... ...

...

...

π−L

π′−L

...

...

π−2

π′−2

...

...

π−1

π′−1

...

...

π1

π′1

...

...

π2

π′2

...

...

πL

π′L

...

...

...

...

l = 3

w = 3

r = 4

−L−2 −L−1 L+1 L+2

π−L−2

...

π−L−1

...

πL+1

...

πL+2

...

π′L+1

...

π′L+2

...

I Historical Notes

I LDPC convolutional codes introduced by FZ in 1999

I Shown to have near optimal noise thresholds by LSZC in 2005

I (l, r, L, w) ensemble proven to achieve capacity by KRU in 2011

Capacity Achieving Codes: There and Back Again 41 / 65

Spatially-Coupled LDPC Codes: (l, r, L, w) Ensemble

...

...

π0

π′0

−L −2 −1 0 1 2 L... ...

...

...

π−L

π′−L

...

...

π−2

π′−2

...

...

π−1

π′−1

...

...

π1

π′1

...

...

π2

π′2

...

...

πL

π′L

...

...

...

...

l = 3

w = 3

r = 4

−L−2 −L−1 L+1 L+2

π−L−2

...

π−L−1

...

πL+1

...

πL+2

...

π′L+1

...

π′L+2

...

I Historical Notes

I LDPC convolutional codes introduced by FZ in 1999

I Shown to have near optimal noise thresholds by LSZC in 2005

I (l, r, L, w) ensemble proven to achieve capacity by KRU in 2011

Capacity Achieving Codes: There and Back Again 41 / 65

Spatially-Coupled LDPC Codes: (l, r, L, w) Ensemble

...

...

π0

π′0

−L −2 −1 0 1 2 L... ...

...

...

π−L

π′−L

...

...

π−2

π′−2

...

...

π−1

π′−1

...

...

π1

π′1

...

...

π2

π′2

...

...

πL

π′L

...

...

...

...

l = 3

w = 3

r = 4

−L−2 −L−1 L+1 L+2

π−L−2

...

π−L−1

...

πL+1

...

πL+2

...

π′L+1

...

π′L+2

...

I Historical Notes

I LDPC convolutional codes introduced by FZ in 1999

I Shown to have near optimal noise thresholds by LSZC in 2005

I (l, r, L, w) ensemble proven to achieve capacity by KRU in 2011

Capacity Achieving Codes: There and Back Again 42 / 65

The LDPCC Gang

Capacity Achieving Codes: There and Back Again 43 / 65

The Spatial Coupling KRU

Capacity Achieving Codes: There and Back Again 44 / 65

Density Evolution for the (l, r, L, w)-SC LDPC Ensemble

−15 −10 −5 0 5 10 15
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Spatial Position

M
es

sa
ge

E
ra

su
re

P
ro

ba
bi

lit
y

(3, 4, 16, 3)-SC Ensemble with ε = 0.70

x
(`+1)
i =

1

w

w−1∑
k=0

ε

 1

w

w−1∑
j=0

(
1− (1− x(`)i+j−k)r−1

)l−1

1[−L,L+w−1](i−k)

Capacity Achieving Codes: There and Back Again 44 / 65

Density Evolution for the (l, r, L, w)-SC LDPC Ensemble

−15 −10 −5 0 5 10 15
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Spatial Position

M
es

sa
ge

E
ra

su
re

P
ro

ba
bi

lit
y

(3, 4, 16, 3)-SC Ensemble with ε = 0.70

Iteration 1

x
(`+1)
i =

1

w

w−1∑
k=0

ε

 1

w

w−1∑
j=0

(
1− (1− x(`)i+j−k)r−1

)l−1

1[−L,L+w−1](i−k)

Capacity Achieving Codes: There and Back Again 44 / 65

Density Evolution for the (l, r, L, w)-SC LDPC Ensemble

−15 −10 −5 0 5 10 15
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Spatial Position

M
es

sa
ge

E
ra

su
re

P
ro

ba
bi

lit
y

(3, 4, 16, 3)-SC Ensemble with ε = 0.70

Iteration 2

x
(`+1)
i =

1

w

w−1∑
k=0

ε

 1

w

w−1∑
j=0

(
1− (1− x(`)i+j−k)r−1

)l−1

1[−L,L+w−1](i−k)

Capacity Achieving Codes: There and Back Again 44 / 65

Density Evolution for the (l, r, L, w)-SC LDPC Ensemble

−15 −10 −5 0 5 10 15
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Spatial Position

M
es

sa
ge

E
ra

su
re

P
ro

ba
bi

lit
y

(3, 4, 16, 3)-SC Ensemble with ε = 0.70

Iteration 3

x
(`+1)
i =

1

w

w−1∑
k=0

ε

 1

w

w−1∑
j=0

(
1− (1− x(`)i+j−k)r−1

)l−1

1[−L,L+w−1](i−k)

Capacity Achieving Codes: There and Back Again 44 / 65

Density Evolution for the (l, r, L, w)-SC LDPC Ensemble

−15 −10 −5 0 5 10 15
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Spatial Position

M
es

sa
ge

E
ra

su
re

P
ro

ba
bi

lit
y

(3, 4, 16, 3)-SC Ensemble with ε = 0.70

Iteration 4

x
(`+1)
i =

1

w

w−1∑
k=0

ε

 1

w

w−1∑
j=0

(
1− (1− x(`)i+j−k)r−1

)l−1

1[−L,L+w−1](i−k)

Capacity Achieving Codes: There and Back Again 44 / 65

Density Evolution for the (l, r, L, w)-SC LDPC Ensemble

−15 −10 −5 0 5 10 15
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Spatial Position

M
es

sa
ge

E
ra

su
re

P
ro

ba
bi

lit
y

(3, 4, 16, 3)-SC Ensemble with ε = 0.70

Iteration 10

x
(`+1)
i =

1

w

w−1∑
k=0

ε

 1

w

w−1∑
j=0

(
1− (1− x(`)i+j−k)r−1

)l−1

1[−L,L+w−1](i−k)

Capacity Achieving Codes: There and Back Again 44 / 65

Density Evolution for the (l, r, L, w)-SC LDPC Ensemble

−15 −10 −5 0 5 10 15
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Spatial Position

M
es

sa
ge

E
ra

su
re

P
ro

ba
bi

lit
y

(3, 4, 16, 3)-SC Ensemble with ε = 0.70

Iteration 50

x
(`+1)
i =

1

w

w−1∑
k=0

ε

 1

w

w−1∑
j=0

(
1− (1− x(`)i+j−k)r−1

)l−1

1[−L,L+w−1](i−k)

Capacity Achieving Codes: There and Back Again 44 / 65

Density Evolution for the (l, r, L, w)-SC LDPC Ensemble

−15 −10 −5 0 5 10 15
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Spatial Position

M
es

sa
ge

E
ra

su
re

P
ro

ba
bi

lit
y

(3, 4, 16, 3)-SC Ensemble with ε = 0.70

Iteration 100

x
(`+1)
i =

1

w

w−1∑
k=0

ε

 1

w

w−1∑
j=0

(
1− (1− x(`)i+j−k)r−1

)l−1

1[−L,L+w−1](i−k)

Capacity Achieving Codes: There and Back Again 44 / 65

Density Evolution for the (l, r, L, w)-SC LDPC Ensemble

−15 −10 −5 0 5 10 15
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Spatial Position

M
es

sa
ge

E
ra

su
re

P
ro

ba
bi

lit
y

(3, 4, 16, 3)-SC Ensemble with ε = 0.70

Iteration 150

x
(`+1)
i =

1

w

w−1∑
k=0

ε

 1

w

w−1∑
j=0

(
1− (1− x(`)i+j−k)r−1

)l−1

1[−L,L+w−1](i−k)

Capacity Achieving Codes: There and Back Again 45 / 65

Properties of Threshold Saturation

l r εBP εMAP

3 6 0.4294 0.4882

4 8 0.3834 0.4977

5 10 0.3416 0.4995

6 12 0.3075 0.4999

7 14 0.2798 0.5000

I Spatial coupling achieves the MAP threshold as w →∞
I BP threshold typically decreases after l = 3

I MAP threshold is increasing in l, r for fixed rate

I Benefits and Drawbacks

I For fixed L, minimum distance grows linearly with block length

I Rate loss of O(w/L) is a big obstacle in practice

Capacity Achieving Codes: There and Back Again 46 / 65

Threshold Saturation via Spatial Coupling

I General Phenomenon (observed by Kudekar, Richardson, Urbanke)

I BP threshold of the spatially-coupled system converges to the
MAP threshold of the uncoupled system

I Can be proven rigorously in many cases!

I Connection to statistical physics

I Factor graph defines system of coupled particles

I Valid sequences are ordered crystalline structures

I Between BP and MAP threshold, system acts as supercooled liquid

I Correct answer (crystalline state) has minimum energy

I Crystallization (i.e., decoding) does not occur without a seed

I Ex.: ice melts at 0 ◦C but freezing w/o a seed requires −48.3 ◦C

http://www.youtube.com/watch?v=Xe8vJrIvDQM

http://www.youtube.com/watch?v=Xe8vJrIvDQM

Capacity Achieving Codes: There and Back Again 46 / 65

Threshold Saturation via Spatial Coupling

I General Phenomenon (observed by Kudekar, Richardson, Urbanke)

I BP threshold of the spatially-coupled system converges to the
MAP threshold of the uncoupled system

I Can be proven rigorously in many cases!

I Connection to statistical physics

I Factor graph defines system of coupled particles

I Valid sequences are ordered crystalline structures

I Between BP and MAP threshold, system acts as supercooled liquid

I Correct answer (crystalline state) has minimum energy

I Crystallization (i.e., decoding) does not occur without a seed

I Ex.: ice melts at 0 ◦C but freezing w/o a seed requires −48.3 ◦C

http://www.youtube.com/watch?v=Xe8vJrIvDQM

http://www.youtube.com/watch?v=Xe8vJrIvDQM

Capacity Achieving Codes: There and Back Again 46 / 65

Threshold Saturation via Spatial Coupling

I General Phenomenon (observed by Kudekar, Richardson, Urbanke)

I BP threshold of the spatially-coupled system converges to the
MAP threshold of the uncoupled system

I Can be proven rigorously in many cases!

I Connection to statistical physics

I Factor graph defines system of coupled particles

I Valid sequences are ordered crystalline structures

I Between BP and MAP threshold, system acts as supercooled liquid

I Correct answer (crystalline state) has minimum energy

I Crystallization (i.e., decoding) does not occur without a seed

I Ex.: ice melts at 0 ◦C but freezing w/o a seed requires −48.3 ◦C

http://www.youtube.com/watch?v=Xe8vJrIvDQM

http://www.youtube.com/watch?v=Xe8vJrIvDQM

Capacity Achieving Codes: There and Back Again 47 / 65

Why is Spatial Coupling Interesting?

I Breakthroughs: first practical constructions of

I universal codes for binary-input memoryless channels [KRU12]

I information-theoretically optimal compressive sensing [DJM11]

I universal codes for Slepian-Wolf and MAC problems [YJNP11]

I codes → capacity with iterative hard-decision decoding [JNP12]

I codes → rate-distortion limit with iterative decoding [AMUV12]

I It allows rigorous proof in many cases

I Original proofs [KRU11/12] quite specific to LDPC codes

I Our proof for increasing scalar/vector recursions [YJNP12/13]

I Spatial coupling as a proof technique [GMU13]

I For a large random factor graph, construct a coupled version

I Use DE to analyze BP decoding of coupled system

I Compare uncoupled MAP with coupled BP via interpolation

Capacity Achieving Codes: There and Back Again 47 / 65

Why is Spatial Coupling Interesting?

I Breakthroughs: first practical constructions of

I universal codes for binary-input memoryless channels [KRU12]

I information-theoretically optimal compressive sensing [DJM11]

I universal codes for Slepian-Wolf and MAC problems [YJNP11]

I codes → capacity with iterative hard-decision decoding [JNP12]

I codes → rate-distortion limit with iterative decoding [AMUV12]

I It allows rigorous proof in many cases

I Original proofs [KRU11/12] quite specific to LDPC codes

I Our proof for increasing scalar/vector recursions [YJNP12/13]

I Spatial coupling as a proof technique [GMU13]

I For a large random factor graph, construct a coupled version

I Use DE to analyze BP decoding of coupled system

I Compare uncoupled MAP with coupled BP via interpolation

Capacity Achieving Codes: There and Back Again 47 / 65

Why is Spatial Coupling Interesting?

I Breakthroughs: first practical constructions of

I universal codes for binary-input memoryless channels [KRU12]

I information-theoretically optimal compressive sensing [DJM11]

I universal codes for Slepian-Wolf and MAC problems [YJNP11]

I codes → capacity with iterative hard-decision decoding [JNP12]

I codes → rate-distortion limit with iterative decoding [AMUV12]

I It allows rigorous proof in many cases

I Original proofs [KRU11/12] quite specific to LDPC codes

I Our proof for increasing scalar/vector recursions [YJNP12/13]

I Spatial coupling as a proof technique [GMU13]

I For a large random factor graph, construct a coupled version

I Use DE to analyze BP decoding of coupled system

I Compare uncoupled MAP with coupled BP via interpolation

Capacity Achieving Codes: There and Back Again 48 / 65

Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation

Capacity Achieving Codes: There and Back Again 49 / 65

Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)

I For a sequence of coding schemes involving one or more
parameters, the parameter region where decoding succeeds in
the limit

I In contrast, a capacity region is a rate region for fixed channels

I Properties

I For fixed encoders, the ACPR depends on the decoders

I For example, one has BP-ACPR ⊆ MAP-ACPR

I Often, ∃ unique maximal ACPR given by information theory

I Universality

I A sequence of encoding/decoding schemes is called universal if:
its ACPR equals the optimal ACPR

I Channel parameters are assumed unknown at the transmitter

I At the receiver, the channel parameters are easily estimated

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.8

1

1.2

1.4

1.6

1.8

2

2.2

MAC-ACPR boundary
for rate 1/2

α1

α
2

Capacity Achieving Codes: There and Back Again 49 / 65

Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)

I For a sequence of coding schemes involving one or more
parameters, the parameter region where decoding succeeds in
the limit

I In contrast, a capacity region is a rate region for fixed channels

I Properties

I For fixed encoders, the ACPR depends on the decoders

I For example, one has BP-ACPR ⊆ MAP-ACPR

I Often, ∃ unique maximal ACPR given by information theory

I Universality

I A sequence of encoding/decoding schemes is called universal if:
its ACPR equals the optimal ACPR

I Channel parameters are assumed unknown at the transmitter

I At the receiver, the channel parameters are easily estimated

Capacity Achieving Codes: There and Back Again 49 / 65

Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)

I For a sequence of coding schemes involving one or more
parameters, the parameter region where decoding succeeds in
the limit

I In contrast, a capacity region is a rate region for fixed channels

I Properties

I For fixed encoders, the ACPR depends on the decoders

I For example, one has BP-ACPR ⊆ MAP-ACPR

I Often, ∃ unique maximal ACPR given by information theory

I Universality

I A sequence of encoding/decoding schemes is called universal if:
its ACPR equals the optimal ACPR

I Channel parameters are assumed unknown at the transmitter

I At the receiver, the channel parameters are easily estimated

Capacity Achieving Codes: There and Back Again 50 / 65

2-User Binary-Input Gaussian Multiple Access Channel

X1

X2

+

h1

h2

Z ∼ N (0, 1)

Y

I Fixed noise variance

I Real channel gains h1 and h2 not known at transmitter

I Each code has rate R

I MAC-ACPR denotes the information-theoretic optimal region

Capacity Achieving Codes: There and Back Again 51 / 65

A Little History: SC for Multiple-Access (MAC) Channels

I KK consider a binary-adder erasure channel (ISIT 2011)

I SC exhibits threshold saturation for the joint decoder

I YNPN consider the Gaussian MAC (ISIT/Allerton 2011)

I SC exhibits threshold saturation for the joint decoder

I For channel gains h1, h2 unknown at transmitter,
SC provides universality

I Others consider CDMA systems without coding

I TTK show SC improves BP demod of standard CDMA

I ST prove saturation for a SC protograph-style CDMA

Capacity Achieving Codes: There and Back Again 52 / 65

Spatially-Coupled Factor Graph for Joint Decoder

2L+ 1

Capacity Achieving Codes: There and Back Again 52 / 65

Spatially-Coupled Factor Graph for Joint Decoder

2L+ 1

Capacity Achieving Codes: There and Back Again 52 / 65

Spatially-Coupled Factor Graph for Joint Decoder

2L+ 1

Capacity Achieving Codes: There and Back Again 53 / 65

DE Performance of the Joint Decoder

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

MAC-ACPR
boundary for rate
1/2

α1 = |h1|2

α
2
=
|h

2
|2

Capacity Achieving Codes: There and Back Again 53 / 65

DE Performance of the Joint Decoder

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

BP-ACPR, LDPC(3, 6)

MAC-ACPR
boundary for rate
1/2

α1 = |h1|2

α
2
=
|h

2
|2

Capacity Achieving Codes: There and Back Again 53 / 65

DE Performance of the Joint Decoder

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

BP-ACPR, LDPC(3, 6)

BP-ACPR, SC(3, 6, 64, 5)

MAC-ACPR
boundary for rate
1/2

α1 = |h1|2

α
2
=
|h

2
|2

Capacity Achieving Codes: There and Back Again 53 / 65

DE Performance of the Joint Decoder

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

MAC-ACPR
boundary for rate
1/2

BP-ACPR, LDPC(4, 8)

α1 = |h1|2

α
2
=
|h

2
|2

Capacity Achieving Codes: There and Back Again 53 / 65

DE Performance of the Joint Decoder

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

BP-ACPR,
SC(4, 8, 64, 5)

MAC-ACPR
boundary for rate
1/2

BP-ACPR, LDPC(4, 8)

α1 = |h1|2

α
2
=
|h

2
|2

Capacity Achieving Codes: There and Back Again 54 / 65

Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation

Capacity Achieving Codes: There and Back Again 55 / 65

Single Monotone Recursion

I Smooth increasing f : [0, 1]→ [0, 1]

I Discrete-time recursion

x(`+1) = f(x(`))

I “Potential energy” Us(x)

Us(x) =

∫ x

0

(
z − f(z)

)
dz =

x2

2
− F (x)

I Continuous (small step) dynamics

d

dt
x(t) = f

(
x(t)

)
−x(t) = −∇Us

(
x(t)

)
I Lyapunov stability

d

dt
Us

(
x(t)

)
= −

(
x(t)− f(x(t))

)2
Both ↓ 0 iff no fixed points in (0, 1]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

25
U
s
(x

)

Capacity Achieving Codes: There and Back Again 55 / 65

Single Monotone Recursion

I Smooth increasing f : [0, 1]→ [0, 1]

I Discrete-time recursion

x(`+1) = f(x(`))

I “Potential energy” Us(x)

Us(x) =

∫ x

0

(
z − f(z)

)
dz =

x2

2
− F (x)

I Continuous (small step) dynamics

d

dt
x(t) = f

(
x(t)

)
−x(t) = −∇Us

(
x(t)

)
I Lyapunov stability

d

dt
Us

(
x(t)

)
= −

(
x(t)− f(x(t))

)2
Both ↓ 0 iff no fixed points in (0, 1]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

25
U
s
(x

)

Capacity Achieving Codes: There and Back Again 55 / 65

Single Monotone Recursion

I Smooth increasing f : [0, 1]→ [0, 1]

I Discrete-time recursion

x(`+1) = f(x(`))

I “Potential energy” Us(x)

Us(x) =

∫ x

0

(
z − f(z)

)
dz =

x2

2
− F (x)

I Continuous (small step) dynamics

d

dt
x(t) = f

(
x(t)

)
−x(t) = −∇Us

(
x(t)

)
I Lyapunov stability

d

dt
Us

(
x(t)

)
= −

(
x(t)− f(x(t))

)2
Both ↓ 0 iff no fixed points in (0, 1]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

25
U
s
(x

)

Capacity Achieving Codes: There and Back Again 55 / 65

Single Monotone Recursion

I Smooth increasing f : [0, 1]→ [0, 1]

I Discrete-time recursion

x(`+1) = f(x(`))

I “Potential energy” Us(x)

Us(x) =

∫ x

0

(
z − f(z)

)
dz =

x2

2
− F (x)

I Continuous (small step) dynamics

d

dt
x(t) = f

(
x(t)

)
−x(t) = −∇Us

(
x(t)

)

I Lyapunov stability

d

dt
Us

(
x(t)

)
= −

(
x(t)− f(x(t))

)2
Both ↓ 0 iff no fixed points in (0, 1]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

25
U
s
(x

)

Capacity Achieving Codes: There and Back Again 55 / 65

Single Monotone Recursion

I Smooth increasing f : [0, 1]→ [0, 1]

I Discrete-time recursion

x(`+1) = f(x(`))

I “Potential energy” Us(x)

Us(x) =

∫ x

0

(
z − f(z)

)
dz =

x2

2
− F (x)

I Continuous (small step) dynamics

d

dt
x(t) = f

(
x(t)

)
−x(t) = −∇Us

(
x(t)

)
I Lyapunov stability

d

dt
Us

(
x(t)

)
= −

(
x(t)− f(x(t))

)2

Both ↓ 0 iff no fixed points in (0, 1]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

25
U
s
(x

)

Capacity Achieving Codes: There and Back Again 55 / 65

Single Monotone Recursion

I Smooth increasing f : [0, 1]→ [0, 1]

I Discrete-time recursion

x(`+1) = f(x(`))

I “Potential energy” Us(x)

Us(x) =

∫ x

0

(
z − f(z)

)
dz =

x2

2
− F (x)

I Continuous (small step) dynamics

d

dt
x(t) = f

(
x(t)

)
−x(t) = −∇Us

(
x(t)

)
I Lyapunov stability

d

dt
Us

(
x(t)

)
= −

(
x(t)− f(x(t))

)2
Both ↓ 0 iff no fixed points in (0, 1]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

25
U
s
(x

)

Capacity Achieving Codes: There and Back Again 56 / 65

Coupled Monotone Recursion (1)

I Coupled recursion x(`+1) = Tx(`) with x(`) =
(
x
(`)
0 , x

(`)
1 , . . .

)
and

Tx , A>f
(
Ax
)
,

where [f(x)]i = f(xi) and A averages w adjacent values

A =
1

w

1 1 · · · 1 0 · · ·
0 1 1

. . . 1
.

. . .
. . .

. . .
. . .

. . .

I i.e., avg right w positions, apply f , then avg left w positions

I Coupled potential: Uc(x) = 1
2

∞∑
i=0

x2i −
∞∑
i=0

F

(
1
w

w−1∑
j=0

xi+j

)
I Satisfies ∇Uc(x) = x−A>f

(
Ax
)

I Danger: there be dragons———– infinities

Capacity Achieving Codes: There and Back Again 56 / 65

Coupled Monotone Recursion (1)

I Coupled recursion x(`+1) = Tx(`) with x(`) =
(
x
(`)
0 , x

(`)
1 , . . .

)
and

Tx , A>f
(
Ax
)
,

where [f(x)]i = f(xi) and A averages w adjacent values

A =
1

w

1 1 · · · 1 0 · · ·
0 1 1

. . . 1
.

. . .
. . .

. . .
. . .

. . .

I i.e., avg right w positions, apply f , then avg left w positions

I Coupled potential: Uc(x) = 1
2

∞∑
i=0

x2i −
∞∑
i=0

F

(
1
w

w−1∑
j=0

xi+j

)
I Satisfies ∇Uc(x) = x−A>f

(
Ax
)

I Danger: there be dragons———– infinities

Capacity Achieving Codes: There and Back Again 57 / 65

Coupled Monotone Recursion (2)

I Properties of T (note: x � y ⇔ xi ≤ yi for all i)

I T is monotone: x � y implies Tx � Ty
I T preserves spatial order: xi+1 ≥ xi implies [Tx]i+1 ≥ [Tx]i

I For x(0) = 1, iterates x
(`)
i are decreasing in ` and increasing in i

I Spatial limit exists: x
(`)
∞ = limi→∞ x

(`)
i

I Iteration limit exists: x
(∞)
i = lim`→∞ x

(`)
i

I Iteration limit satisfies fixed point: x(∞) = Tx(∞)

I Double limit satisfies fixed point: x
(∞)
∞ = f

(
x
(∞)
∞
)

Capacity Achieving Codes: There and Back Again 57 / 65

Coupled Monotone Recursion (2)

I Properties of T (note: x � y ⇔ xi ≤ yi for all i)

I T is monotone: x � y implies Tx � Ty
I T preserves spatial order: xi+1 ≥ xi implies [Tx]i+1 ≥ [Tx]i

I For x(0) = 1, iterates x
(`)
i are decreasing in ` and increasing in i

I Spatial limit exists: x
(`)
∞ = limi→∞ x

(`)
i

I Iteration limit exists: x
(∞)
i = lim`→∞ x

(`)
i

I Iteration limit satisfies fixed point: x(∞) = Tx(∞)

I Double limit satisfies fixed point: x
(∞)
∞ = f

(
x
(∞)
∞
)

Capacity Achieving Codes: There and Back Again 58 / 65

Intuition Behind Threshold Saturation

I Between the BP and MAP threshold

I decoding trajectory looks like a right-moving wave

I we know recursion converges pointwise to a limit

I if limit not 0, then compute energy change due to right shift

I Right-shift S satisfies [Sx]i = xi−1 with x−1 = 0

I Relative potential: Vx(t) = Uc

(
(1− t)x+ tSx

)
− Uc(x)

I If xi+1 ≥ xi for all i, then Vx(t) well-defined for t ∈ [0, 1]

I For t = 1, one gets a telescoping sum that shows

Vx(1) ≤ −Us(x∞)

Capacity Achieving Codes: There and Back Again 58 / 65

Intuition Behind Threshold Saturation

I Between the BP and MAP threshold

I decoding trajectory looks like a right-moving wave

I we know recursion converges pointwise to a limit

I if limit not 0, then compute energy change due to right shift

I Right-shift S satisfies [Sx]i = xi−1 with x−1 = 0

I Relative potential: Vx(t) = Uc

(
(1− t)x+ tSx

)
− Uc(x)

I If xi+1 ≥ xi for all i, then Vx(t) well-defined for t ∈ [0, 1]

I For t = 1, one gets a telescoping sum that shows

Vx(1) ≤ −Us(x∞)

Capacity Achieving Codes: There and Back Again 58 / 65

Intuition Behind Threshold Saturation

I Between the BP and MAP threshold

I decoding trajectory looks like a right-moving wave

I we know recursion converges pointwise to a limit

I if limit not 0, then compute energy change due to right shift

I Right-shift S satisfies [Sx]i = xi−1 with x−1 = 0

I Relative potential: Vx(t) = Uc

(
(1− t)x+ tSx

)
− Uc(x)

I If xi+1 ≥ xi for all i, then Vx(t) well-defined for t ∈ [0, 1]

I For t = 1, one gets a telescoping sum that shows

Vx(1) ≤ −Us(x∞)

Capacity Achieving Codes: There and Back Again 58 / 65

Intuition Behind Threshold Saturation

I Between the BP and MAP threshold

I decoding trajectory looks like a right-moving wave

I we know recursion converges pointwise to a limit

I if limit not 0, then compute energy change due to right shift

I Right-shift S satisfies [Sx]i = xi−1 with x−1 = 0

I Relative potential: Vx(t) = Uc

(
(1− t)x+ tSx

)
− Uc(x)

I If xi+1 ≥ xi for all i, then Vx(t) well-defined for t ∈ [0, 1]

I For t = 1, one gets a telescoping sum that shows

Vx(1) ≤ −Us(x∞)

Capacity Achieving Codes: There and Back Again 58 / 65

Intuition Behind Threshold Saturation

I Between the BP and MAP threshold

I decoding trajectory looks like a right-moving wave

I we know recursion converges pointwise to a limit

I if limit not 0, then compute energy change due to right shift

I Right-shift S satisfies [Sx]i = xi−1 with x−1 = 0

I Relative potential: Vx(t) = Uc

(
(1− t)x+ tSx

)
− Uc(x)

I If xi+1 ≥ xi for all i, then Vx(t) well-defined for t ∈ [0, 1]

I For t = 1, one gets a telescoping sum that shows

Vx(1) ≤ −Us(x∞)

Capacity Achieving Codes: There and Back Again 58 / 65

Intuition Behind Threshold Saturation

I Between the BP and MAP threshold

I decoding trajectory looks like a right-moving wave

I we know recursion converges pointwise to a limit

I if limit not 0, then compute energy change due to right shift

I Right-shift S satisfies [Sx]i = xi−1 with x−1 = 0

I Relative potential: Vx(t) = Uc

(
(1− t)x+ tSx

)
− Uc(x)

I If xi+1 ≥ xi for all i, then Vx(t) well-defined for t ∈ [0, 1]

I For t = 1, one gets a telescoping sum that shows

Vx(1) ≤ −Us(x∞)

Capacity Achieving Codes: There and Back Again 58 / 65

Intuition Behind Threshold Saturation

I Between the BP and MAP threshold

I decoding trajectory looks like a right-moving wave

I we know recursion converges pointwise to a limit

I if limit not 0, then compute energy change due to right shift

I Right-shift S satisfies [Sx]i = xi−1 with x−1 = 0

I Relative potential: Vx(t) = Uc

(
(1− t)x+ tSx

)
− Uc(x)

I If xi+1 ≥ xi for all i, then Vx(t) well-defined for t ∈ [0, 1]

I For t = 1, one gets a telescoping sum that shows

Vx(1) ≤ −Us(x∞)

Capacity Achieving Codes: There and Back Again 59 / 65

Threshold Saturation

Theorem

If f(0)=0 and f ′(0)<1 (0 is stable f.p.) with Us(x)>0 for x∈(0, 1],

then ∃w0 <∞ such that x
(∞)
∞ = 0 for all w > w0.

I Define relative potential (with xi(t) , xi + t(xi−1 − xi))

Vx(t) ,
1

2

∞∑
i=0

(
xi(t)

2−(xi)
2
)
−
∞∑
i=0

F
 1

w

w−1∑
j=0

xi(t)

− F
 1

w

w−1∑
j=0

xi

I Sketch of Proof:

I For x(0) = 1, let z = x(∞) be limiting fixed-point of recursion
I If z∞ = 0, then we’re done. Suppose z∞ > 0
I Then, z∞ = f(z∞) ≥ smallest non-zero f.p. > 0 (ind. of w)
I Thus, U(z∞) > 0 by hypothesis
I Telescoping sum for V shows Vz(1) ≤ −U(z∞) < 0
I Taylor series for V shows |Vz(1)| ≤ K 1

w

(
1 + supx∈[0,1] |f ′(x)|

)
I Thus, we get a contradiction for sufficiently large w

Capacity Achieving Codes: There and Back Again 59 / 65

Threshold Saturation

Theorem

If f(0)=0 and f ′(0)<1 (0 is stable f.p.) with Us(x)>0 for x∈(0, 1],

then ∃w0 <∞ such that x
(∞)
∞ = 0 for all w > w0.

I Define relative potential (with xi(t) , xi + t(xi−1 − xi))

Vx(t) ,
1

2

∞∑
i=0

(
xi(t)

2−(xi)
2
)
−
∞∑
i=0

F
 1

w

w−1∑
j=0

xi(t)

− F
 1

w

w−1∑
j=0

xi

I Sketch of Proof:

I For x(0) = 1, let z = x(∞) be limiting fixed-point of recursion
I If z∞ = 0, then we’re done. Suppose z∞ > 0
I Then, z∞ = f(z∞) ≥ smallest non-zero f.p. > 0 (ind. of w)
I Thus, U(z∞) > 0 by hypothesis
I Telescoping sum for V shows Vz(1) ≤ −U(z∞) < 0
I Taylor series for V shows |Vz(1)| ≤ K 1

w

(
1 + supx∈[0,1] |f ′(x)|

)
I Thus, we get a contradiction for sufficiently large w

Capacity Achieving Codes: There and Back Again 59 / 65

Threshold Saturation

Theorem

If f(0)=0 and f ′(0)<1 (0 is stable f.p.) with Us(x)>0 for x∈(0, 1],

then ∃w0 <∞ such that x
(∞)
∞ = 0 for all w > w0.

I Define relative potential (with xi(t) , xi + t(xi−1 − xi))

Vx(t) ,
1

2

∞∑
i=0

(
xi(t)

2−(xi)
2
)
−
∞∑
i=0

F
 1

w

w−1∑
j=0

xi(t)

− F
 1

w

w−1∑
j=0

xi

I Sketch of Proof:

I For x(0) = 1, let z = x(∞) be limiting fixed-point of recursion

I If z∞ = 0, then we’re done. Suppose z∞ > 0
I Then, z∞ = f(z∞) ≥ smallest non-zero f.p. > 0 (ind. of w)
I Thus, U(z∞) > 0 by hypothesis
I Telescoping sum for V shows Vz(1) ≤ −U(z∞) < 0
I Taylor series for V shows |Vz(1)| ≤ K 1

w

(
1 + supx∈[0,1] |f ′(x)|

)
I Thus, we get a contradiction for sufficiently large w

Capacity Achieving Codes: There and Back Again 59 / 65

Threshold Saturation

Theorem

If f(0)=0 and f ′(0)<1 (0 is stable f.p.) with Us(x)>0 for x∈(0, 1],

then ∃w0 <∞ such that x
(∞)
∞ = 0 for all w > w0.

I Define relative potential (with xi(t) , xi + t(xi−1 − xi))

Vx(t) ,
1

2

∞∑
i=0

(
xi(t)

2−(xi)
2
)
−
∞∑
i=0

F
 1

w

w−1∑
j=0

xi(t)

− F
 1

w

w−1∑
j=0

xi

I Sketch of Proof:

I For x(0) = 1, let z = x(∞) be limiting fixed-point of recursion
I If z∞ = 0, then we’re done. Suppose z∞ > 0

I Then, z∞ = f(z∞) ≥ smallest non-zero f.p. > 0 (ind. of w)
I Thus, U(z∞) > 0 by hypothesis
I Telescoping sum for V shows Vz(1) ≤ −U(z∞) < 0
I Taylor series for V shows |Vz(1)| ≤ K 1

w

(
1 + supx∈[0,1] |f ′(x)|

)
I Thus, we get a contradiction for sufficiently large w

Capacity Achieving Codes: There and Back Again 59 / 65

Threshold Saturation

Theorem

If f(0)=0 and f ′(0)<1 (0 is stable f.p.) with Us(x)>0 for x∈(0, 1],

then ∃w0 <∞ such that x
(∞)
∞ = 0 for all w > w0.

I Define relative potential (with xi(t) , xi + t(xi−1 − xi))

Vx(t) ,
1

2

∞∑
i=0

(
xi(t)

2−(xi)
2
)
−
∞∑
i=0

F
 1

w

w−1∑
j=0

xi(t)

− F
 1

w

w−1∑
j=0

xi

I Sketch of Proof:

I For x(0) = 1, let z = x(∞) be limiting fixed-point of recursion
I If z∞ = 0, then we’re done. Suppose z∞ > 0
I Then, z∞ = f(z∞) ≥ smallest non-zero f.p. > 0 (ind. of w)

I Thus, U(z∞) > 0 by hypothesis
I Telescoping sum for V shows Vz(1) ≤ −U(z∞) < 0
I Taylor series for V shows |Vz(1)| ≤ K 1

w

(
1 + supx∈[0,1] |f ′(x)|

)
I Thus, we get a contradiction for sufficiently large w

Capacity Achieving Codes: There and Back Again 59 / 65

Threshold Saturation

Theorem

If f(0)=0 and f ′(0)<1 (0 is stable f.p.) with Us(x)>0 for x∈(0, 1],

then ∃w0 <∞ such that x
(∞)
∞ = 0 for all w > w0.

I Define relative potential (with xi(t) , xi + t(xi−1 − xi))

Vx(t) ,
1

2

∞∑
i=0

(
xi(t)

2−(xi)
2
)
−
∞∑
i=0

F
 1

w

w−1∑
j=0

xi(t)

− F
 1

w

w−1∑
j=0

xi

I Sketch of Proof:

I For x(0) = 1, let z = x(∞) be limiting fixed-point of recursion
I If z∞ = 0, then we’re done. Suppose z∞ > 0
I Then, z∞ = f(z∞) ≥ smallest non-zero f.p. > 0 (ind. of w)
I Thus, U(z∞) > 0 by hypothesis

I Telescoping sum for V shows Vz(1) ≤ −U(z∞) < 0
I Taylor series for V shows |Vz(1)| ≤ K 1

w

(
1 + supx∈[0,1] |f ′(x)|

)
I Thus, we get a contradiction for sufficiently large w

Capacity Achieving Codes: There and Back Again 59 / 65

Threshold Saturation

Theorem

If f(0)=0 and f ′(0)<1 (0 is stable f.p.) with Us(x)>0 for x∈(0, 1],

then ∃w0 <∞ such that x
(∞)
∞ = 0 for all w > w0.

I Define relative potential (with xi(t) , xi + t(xi−1 − xi))

Vx(t) ,
1

2

∞∑
i=0

(
xi(t)

2−(xi)
2
)
−
∞∑
i=0

F
 1

w

w−1∑
j=0

xi(t)

− F
 1

w

w−1∑
j=0

xi

I Sketch of Proof:

I For x(0) = 1, let z = x(∞) be limiting fixed-point of recursion
I If z∞ = 0, then we’re done. Suppose z∞ > 0
I Then, z∞ = f(z∞) ≥ smallest non-zero f.p. > 0 (ind. of w)
I Thus, U(z∞) > 0 by hypothesis
I Telescoping sum for V shows Vz(1) ≤ −U(z∞) < 0

I Taylor series for V shows |Vz(1)| ≤ K 1
w

(
1 + supx∈[0,1] |f ′(x)|

)
I Thus, we get a contradiction for sufficiently large w

Capacity Achieving Codes: There and Back Again 59 / 65

Threshold Saturation

Theorem

If f(0)=0 and f ′(0)<1 (0 is stable f.p.) with Us(x)>0 for x∈(0, 1],

then ∃w0 <∞ such that x
(∞)
∞ = 0 for all w > w0.

I Define relative potential (with xi(t) , xi + t(xi−1 − xi))

Vx(t) ,
1

2

∞∑
i=0

(
xi(t)

2−(xi)
2
)
−
∞∑
i=0

F
 1

w

w−1∑
j=0

xi(t)

− F
 1

w

w−1∑
j=0

xi

I Sketch of Proof:

I For x(0) = 1, let z = x(∞) be limiting fixed-point of recursion
I If z∞ = 0, then we’re done. Suppose z∞ > 0
I Then, z∞ = f(z∞) ≥ smallest non-zero f.p. > 0 (ind. of w)
I Thus, U(z∞) > 0 by hypothesis
I Telescoping sum for V shows Vz(1) ≤ −U(z∞) < 0
I Taylor series for V shows |Vz(1)| ≤ K 1

w

(
1 + supx∈[0,1] |f ′(x)|

)

I Thus, we get a contradiction for sufficiently large w

Capacity Achieving Codes: There and Back Again 59 / 65

Threshold Saturation

Theorem

If f(0)=0 and f ′(0)<1 (0 is stable f.p.) with Us(x)>0 for x∈(0, 1],

then ∃w0 <∞ such that x
(∞)
∞ = 0 for all w > w0.

I Define relative potential (with xi(t) , xi + t(xi−1 − xi))

Vx(t) ,
1

2

∞∑
i=0

(
xi(t)

2−(xi)
2
)
−
∞∑
i=0

F
 1

w

w−1∑
j=0

xi(t)

− F
 1

w

w−1∑
j=0

xi

I Sketch of Proof:

I For x(0) = 1, let z = x(∞) be limiting fixed-point of recursion
I If z∞ = 0, then we’re done. Suppose z∞ > 0
I Then, z∞ = f(z∞) ≥ smallest non-zero f.p. > 0 (ind. of w)
I Thus, U(z∞) > 0 by hypothesis
I Telescoping sum for V shows Vz(1) ≤ −U(z∞) < 0
I Taylor series for V shows |Vz(1)| ≤ K 1

w

(
1 + supx∈[0,1] |f ′(x)|

)
I Thus, we get a contradiction for sufficiently large w

Capacity Achieving Codes: There and Back Again 60 / 65

History of Threshold Saturation Proofs

I the BEC in 2010 [KRU11]

I Established many properties and tools used by later approaches

I the Curie-Weiss model of physics in 2010 [HMU12]

I CDMA using a GA in 2011 [TTK12]

I CDMA with outer code via GA in 2011 [Tru12]

I compressive sensing using a GA in 2011 [DJM13]

I regular codes on BMS channels in 2012 [KRU13]

I increasing scalar and vector recursions in 2012 [YJNP14]

I irregular LDPC codes on BMS channels in 2012 [KYMP14]

I non-decreasing scalar recursions in 2012 [KRU15]

I non-binary LDPC codes on the BEC in 2014 [AG16]

I and more since 2014...

Capacity Achieving Codes: There and Back Again 61 / 65

Summary and Open Problems

I Factor Graphs

I Useful tool for modeling dependent random variables

I Low-complexity algorithms for approximate inference

I Density evolution can be used to analyze performance

I Spatial Coupling

I Powerful technique for designing and understanding FGs.

I Related to the statistical physics of supercooled liquids

I Simple proof of threshold saturation for scalar recursions

I Interesting Open Problems

I Code constructions that reduce the rate-loss due to termination

I Compute the scaling exponent for SC codes

I Finding new problems where SC provides benefits

Capacity Achieving Codes: There and Back Again 62 / 65

Thanks for your attention

Capacity Achieving Codes: There and Back Again 63 / 65

References I

[AG16] Iryna Andriyanova, Alexandre Graell i Amat. Threshold saturation for
nonbinary SC-LDPC codes on the binary erasure channel.

arXiv preprint arXiv:1311.2003v4, 2016.

[DJM13] D.L. Donoho, A. Javanmard, A. Montanari.

Information-theoretically optimal compressed sensing via spatial coupling
and approximate message passing.

IEEE Trans. Inform. Theory, 59(11):7434–7464, Nov. 2013.

[Gal63] Robert G. Gallager.

Low-Density Parity-Check Codes.

The M.I.T. Press, Cambridge, MA, USA, 1963.

[HMU12] S. H. Hassani, N. Macris, R. Urbanke.

Chains of mean-field models.

J. Stat. Mech., strona P02011, 2012.

[KFL01] Frank R. Kschischang, Brendan J. Frey, Hans-Andrea Loeliger.

Factor graphs and the sum-product algorithm.

IEEE Trans. Inform. Theory, 47(2):498–519, Feb. 2001.

[KRU11] S. Kudekar, T. J. Richardson, R. L. Urbanke.

Threshold saturation via spatial coupling: Why convolutional LDPC
ensembles perform so well over the BEC.

IEEE Trans. Inform. Theory, 57(2):803–834, Feb. 2011.

Capacity Achieving Codes: There and Back Again 64 / 65

References II

[KRU13] S. Kudekar, T. Richardson, R. L. Urbanke.

Spatially coupled ensembles universally achieve capacity under belief
propagation.

IEEE Trans. Inform. Theory, 59(12):7761–7813, Dec. 2013.

[KRU15] Shrinivas Kudekar, Thomas J Richardson, Rudiger L Urbanke.

Wave-like solutions of general 1-D spatially coupled systems.

IEEE Trans. Inform. Theory, 61(8):4117–4157, 2015.

[KYMP14] Santhosh Kumar, Andrew J. Young, Nicolas Macris, Henry D. Pfister.

Threshold saturation for spatially-coupled LDPC and LDGM codes on
BMS channels.

IEEE Trans. Inform. Theory, 60(12):7389–7415, Dec. 2014.

[LMSS01] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman.

Efficient erasure correcting codes.

IEEE Trans. Inform. Theory, 47(2):569–584, Feb. 2001.

[Mac99] David J. C. MacKay.

Good error-correcting codes based on very sparse matrices.

IEEE Trans. Inform. Theory, 45(2):399–431, March 1999.

[MM09] M. Mezard, A. Montanari.

Information, Physics, and Computation.

Oxford University Press, New York, NY, 2009.

Capacity Achieving Codes: There and Back Again 65 / 65

References III

[RSU01] Thomas J. Richardson, M. Amin Shokrollahi, Rüdiger L. Urbanke.

Design of capacity-approaching irregular low-density parity-check codes.

IEEE Trans. Inform. Theory, 47(2):619–637, Feb. 2001.

[RU01] Thomas J. Richardson, Rüdiger L. Urbanke.

The capacity of low-density parity-check codes under message-passing
decoding.

IEEE Trans. Inform. Theory, 47(2):599–618, Feb. 2001.

[RU08] Thomas J. Richardson, Rüdiger L. Urbanke.

Modern Coding Theory.

Cambridge University Press, New York, NY, 2008.

[Tru12] Dmitri Truhachev.

Achieving AWGN multiple access channel capacity with spatial graph
coupling.

IEEE Commun. Letters, 16(5):585–588, May 2012.

[TTK12] Keigo Takeuchi, Toshiyuki Tanaka, Tsutomu Kawabata.

A phenomenological study on threshold improvement via spatial coupling.

IEICE Trans. Fundamentals, E95-A(5):974–977, 2012.

[YJNP14] A. Yedla, Y.-Y. Jian, P. S. Nguyen, H. D. Pfister.

A simple proof of Maxwell saturation for coupled scalar recursions.

IEEE Trans. Inform. Theory, 60(11):6943–6965, Nov. 2014.

	Introduction
	Factor Graphs
	Message Passing
	Applications of Factor Graphs
	Applications of EXIT Curves
	Spatially-Coupled Factor Graphs
	Universality for Multiuser Scenarios
	Abstract Formulation of Threshold Saturation

