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Classical DMCs

Discrete channel W (X ,Y finite)

Wx(y)x ∈ X y ∈ Y
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Memoryless extension W

Wx(y)x = (x1, . . . , xn) y = (y1, . . . , yn)

Wx(y) =
∏
i

Wxi(yi)
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Code and Error Probability

Code: M codewords {x1,x2, . . . ,xM} ⊂ X n

Decoder: M disjoint decision regions {Y1, . . . ,YM} ⊆ Yn
(here: maximum likelyhood decoder)

Probability of error given message m

Pe|m =
∑

y/∈Ym

Wxm(y)

= Wxm(Ym)
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Introduction

Maximum error probability

Pe,max = max
m

Pe|m

Optimal codes

P(n)
e,max(R) = min

C
Pe,max

where the minimum is over codes of length n and rate at least R

Channel capacity

C = sup

{
R : lim sup

n→∞
P(n)
e,max(R) = 0

}
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Introduction

Zero-error capacity

C0 = sup{R : P(n)
e,max(R) = 0 for some n}.

Example: =⇒ C0 = 1 [bit/ch. use]

Reliability function:

E(R) = lim sup
n→∞

− 1

n
logP(n)

e,max(R)

that is,
P(n)
e,max(R) ≈ e−nE(R) C0 < R < C
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Bounds on E(R): typical case with C0 = 0

Random Coding lower bound

C0 R
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Bounds on E(R): typical case with C0 = 0

Sphere Packing upper bound

C0 R
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Bounds on E(R): typical case with C0 = 0

Exact Reliability

Rcrit C0 R
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Bounds on E(R): typical case with C0 = 0

Expurgated Lower Bound

R
′
crit C0 R
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Bounds on E(R): typical case with C0 = 0

Zero-Rate Upper Bound

C0 R

M. Dalai Channel reliability: from ordinary to zero-error capacity ESIT 2017 7/67



Bounds on E(R): typical case with C0 = 0

Straight Line Upper Bound

C0 R
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Bounds on E(R): typical case with C0 = 0

Resulting Region for E(R)

C0 R
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General case: C0 > 0

C

Sphere packing upper bound

R

E(R)
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Sphere packing upper bound

R

E(R)

R∞
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General case: C0 > 0

C

Sphere packing upper bound

R

E(R)

C0 ≤ R∞

R∞ might be positive even if C0 = 0
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General case: C0 > 0

C

Random coding lower bound

R

E(R)

R∞
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General case: C0 > 0

C

Expurgated lower bound n = 1

R

E(R)

R∞
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General case: C0 > 0

C

Expurgated lower bound n = 1

R

E(R)

C0?

R∞
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General case: C0 > 0

C

Expurgated lower bound n = 2

R

E(R)

R∞
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General case: C0 > 0

C

Expurgated lower bound n = ∞

R

E(R)

...

R∞

(impossible to compute in general)
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General case: C0 > 0

C R

E(R)

...

C0
R∞

Not necessarily distinct
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Example: typewriter channels

C = log(3)−H(ε)

R

E(R)

R∞ = log(3/2)

ε

ε

ε

Note: C0 = 0
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Example: typewriter channels

C = log(3)−H(ε)

R

E(R)

R∞ = log(3/2)

ε

ε

ε

Straight line bound

Note: C0 = 0
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Example: typewriter channels

C = log(4)−H(ε)

R

E(R)

R∞ = 1 = C0

ε

ε

ε

ε

M. Dalai Channel reliability: from ordinary to zero-error capacity ESIT 2017 10/67



Example: typewriter channels

C = log(4)−H(ε)

R

E(R)

R∞ = 1 = C0

ε

ε

ε

ε

Expurgated bound, only for small ε
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Example: typewriter channels

C = log(5)−H(ε)

R

E(R)

R∞ = log(5/2)

ε

ε

ε

ε

ε

1 log
√
5

Expurgated bound

n = 2

n = 1

(only for small ε)

Note: C0 = log
√

5 (see later)

M. Dalai Channel reliability: from ordinary to zero-error capacity ESIT 2017 11/67



Example: strange case

R

E(R)

1

1/3
1/3

1/3

Note: exact reliability!
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Some More Facts

R

E(R)

0
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Some More Facts

R

E(R)

0 C

Shannon, 1948

C = max
P

∑
x,y

P (x)Wx(y) log
Wx(y)∑

x′ P (x′)Wx′(y)
,
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Some More Facts

R

E(R)

0 C

...later noticed to be an information radius

C = min
Q

max
x

D(Wx||Q)

where D(Q1||Q2) =
∑

y Q1(y) log Q1(y)
Q2(y)

is the Kullback-Leibler
divergence
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Some More Facts

R

E(R)

0 C

C0?

Shannon, 1956
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Some More Facts

R

E(R)

0 C

C0?

CFB
0

Shannon, 1956 (combinatorial)
Upper bounded by the zero-error capacity with feedback

CFB
0 = max

P

− log max
y

∑
x:Wx(y)>0

P (x)
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Some More Facts

R

E(R)

0 C

Sphere-Packing Bound
E(R) ≤ Esp(R)

Fano, 1961 - Shannon, Gallager and Berlekamp, 1967
(probabilistic)

Esp(R) = sup
ρ≥0

max
P

− log
∑
y

(∑
x

P (x)Wx(y)1/(1+ρ)

)1+ρ

− ρR
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Some More Facts

R

E(R)

0 C

Sphere-Packing Bound
E(R) ≤ Esp(R)

Rρ

Also
Rρ = min

Q
max
x

Dα(Wx||Q), α = 1/(1 + ρ)

Dα(Q1||Q2) = 1
α−1 log

∑
y Q1(y)αQ2(y)1−α is the Rényi divergence
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Some More Facts

R

E(R)

0 C

Sphere-Packing Bound
E(R) ≤ Esp(R)

R1

Cutoff rate

R1 = min
Q

max
x

log
1(∑

y

√
Wx(y)Q(y)

)2
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Some More Facts

R

E(R)

0 CR∞ R1

R∞ rate

R∞ = min
Q

max
x

log
1∑

y:Wx(y)>0Q(y)
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Some More Facts

R

E(R)

0 CR∞ = CFB
0 R1

Esp(R) gives C0 ≤ R∞
So we have both C0 ≤ CFB

0 and C0 ≤ R∞
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Some More Facts

R

E(R)

0 CR∞ R1

Esp(R) gives C0 ≤ R∞
So we have both C0 ≤ CFB

0 and C0 ≤ R∞
It turns out that R∞ = CFB

0 (whenever C0 > 0)

Same bound for C0 using combinatorial or probabilistic approaches

We can then minimize R∞ over auxiliary channels W̃
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Some More Facts

R

E(R)

0 CR∞ϑ

Lovász, 1979

New bound: C0 ≤ ϑ
Using geometric representations of graphs

Combinatorial, apparently no connection with probability
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Some More Facts

R

E(R)

0 Cϑ

Lovász, 1979

New bound: C0 ≤ ϑ
Using geometric representations of graphs

Combinatorial, apparently no connection with probability

Goal: better understanding of the R∞ vs ϑ
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Sphere-Packing Bound: Sketch of Proof

Binary hypothesis testing: compare Q⊗n with Wxm

Wx1

WxM

Q⊗n

Wxm(·)
· · ·

Yn
Y1 YM

The decision regions Y1, . . . ,YM are disjoint

Q⊗n(Ym) ≤ 1/M for at least one m, since
∫
Q⊗n = 1

Wxm(Ym) ≥ e−n(Esp(R)+o(1)) using Neyman-Pearson/Chernoff
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Binary Hypothesis Testing (BHT)

BHT between distributions P0 and P1 over V from n i.i.d. samples

Two decision regions

P0 P1

V0 decision region

for P0

V1 decision region

for P1

Error probabilities

Pe|0 =
∑
v∈V1

P0(v) , Pe|1 =
∑
v∈V0

P1(v)
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Binary Hypothesis Testing (Rényi form)

Error exponents in BHT between P0 and P1 with n i.i.d. samples

1

n
logPe|0 = µ(s)− sµ′(s) + o(1)

1

n
logPe|1 = µ(s) + (1− s)µ′(s) + o(1)

where 0 < s < 1,

µ(s) = log
∑
v∈V

P0(v)1−sP1(v)s

= −sD1−s(P0‖P1)

and Dα(P‖Q) is the Rényi divergence

Dα(P‖Q) =
1

α− 1
log
∑
v∈V

Pα(v)Q1−α(v)

Note:

lim
α→1

Dα(P‖Q) =
∑
v∈V

P (v) log
P (v)

Q(v)
=: DKL(P‖Q)
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Error exponents in BHT between P0 and P1 with n i.i.d. samples

1

n
logPe|0 = µ(s)− sµ′(s) + o(1)

1

n
logPe|1 = µ(s) + (1− s)µ′(s) + o(1)

where 0 < s < 1,

µ(s) = log
∑
v∈V

P0(v)1−sP1(v)s

= −sD1−s(P0‖P1)

and Dα(P‖Q) is the Rényi divergence
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Binary Hypothesis Testing (Rényi form)

Interpretation: Shannon-Gallager-Berlekamp, 1967
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Binary Hypothesis Testing (Rényi form)

Another graphical representation

− 1
n logPe|1

− 1
n logPe|0

DKL(P1‖P0)Ds(P1‖P0)

D1−s(P0‖P1)

DKL(P0‖P1)
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Binary Hypothesis Testing (Rényi form)

Another graphical representation

− 1
n logPe|1

− 1
n logPe|0

DKL(P1‖P0)Ds(P1‖P0)

D1−s(P0‖P1)

DKL(P0‖P1) Stein regime

Pe|0 < 1− ε =⇒ − 1
n logPe|1 ≤ DKL(P0‖P1)

... or P0(S) > ε =⇒ P1(S) & e−nDKL(P0‖P1)

M. Dalai Channel reliability: from ordinary to zero-error capacity ESIT 2017 19/67



Binary Hypothesis Testing (Rényi form)

Key role played by the tilted mixture Ps

Ps(v) =
P0(v)1−sP1(v)s∑
v′ P0(v′)1−sP1(v′)s

=⇒ P0(v)

Ps(v)
= eµ(s)e

−s log P1(v)
P0(v) .

P1(v)

v

P0(v)

Ps(v)

1
n log P1(v)

P0(v)
≈ µ′(s) = EPs

[
log P1(V )

P0(V )

]High probability under Ps
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Binary Hypothesis Testing (Kullback-Leibler form)

Alternative expression (more popular)

− 1

n
logPe|0 = DKL(Ps‖P0) + o(1)

− 1

n
logPe|1 = DKL(Ps‖P1) + o(1)

Very simple and intuitive: probabilities that P0 and P1 generate
Ps-like sequences

Directly uses the Stein regime in P0 vs Ps and P1 vs Ps

Note (for later): this does not work in the quantum setting
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Constant composition

Standard procedure for DMCs

Given code with M = enR codewords

Group codewords by empirical “compositions” (or “type”,
empirical frequency of symbols in the codeword)

At most n|X | = eo(n) groups

At least one group contains en(R−o(1)) codewords

Bound probability of error for this subcode

So, we can assume all codewords have same composition, say P
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Back to sphere packing: MIT Proof

BHT between output distribution Wxm and auxiliary Q = Q⊗n

Use Ym as decision region for Wxm

M = enR codewords; for at least one m, Q(Ym) ≤ 1/M and so

− 1

n
logPe|Q ≥ R

But for the optimal test

− 1

n
logPe|Wxm

= −µ(s) + sµ′(s) + o(1)

− 1

n
logPe|Q = −µ(s)− (1− s)µ′(s) + o(1)

where

µ(s) =
∑
x

P (x)

log
∑
y∈Y

Wx(y)1−sQ(y)s

 .
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Back to sphere packing: MIT Proof

So,

− 1

n
logPe|Wxm

≤ sup
0<s<1

[
E0(s, P )− s

1− s
(R− ε)

]
+ o(1)

where

E0(s, P ) = min
Q

[
1

s− 1

∑
x

P (x) log
∑
y

Wx(y)1−sQ(y)s

]

= min
Q

[
s

1− s
∑
x

P (x)D1−s(Wx‖Q)

]
=

s

1− s
I1−s(P,W ),

where Iα(P,W ) is Csiszár’s version of α-mutual information.
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Auxiliary Q - Auxiliary V

The optimal Q is such that

Q(y) =
∑
x

P (x)Vx(y)

if we define Vx(y) as

Vx(y) =
W 1−s
x (y)Qs(y)∑

y′W
1−s
x (y′)Qs(y′)

.

This channel V is such that

I(P, V ) =
∑
x

P (x)D(Vx‖Q)

= R− ε

M. Dalai Channel reliability: from ordinary to zero-error capacity ESIT 2017 25/67



Sphere packing: Haroutunian’s proof

Consider an auxiliary channel V such that I(P, V ) < R

Converse: original coding scheme incurs Pe > ε on V

For at least one codeword m, Vxm(Ym) > ε.

Stein Lemma
Wxm(Ym) & e−nD(V ‖W |P )

Optimizing over V

1

n
log

1

Pe|Wxm

≤ inf
V :I(P,V )<R

D(V ‖W |P )(1 + o(1)).

Optimal V induces

Q(y) =
∑
x

P (x)Vx(y)

optimal for MIT procedure.
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Key difference

MIT proof

Just a single Q and M decoding regions implies Q(Ym) ≤ 1/M
for some m

If Q(Ym) ≤ e−nR then Wxm(Ym) is at least e−nEsp(R)

Haroutunian

Converse for V implies Vxm(Ym) > ε

If Vxm(Ym) > ε then Wxm(Ym) & e−nD(V ‖W |P )

Equivalent

The optimal Q induces the optimal channel V

The optimal channel V induces the optimal Q
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Zero-Error Capacity

The zero-error capacity only depends on the confusability of
symbols in the input alphabet X
Symbols x and x′ confusable if ∃y : Wx(y)Wx′(y) > 0, or∑

y

Wx(y)Wx′(y) > 0

Confusability graph

W G

1

2

3

a

b

c

0.5

0.5
0.1

0.9
1

−→

1 2

3

Hence C0(W ) = C(G) (Graph Capacity)
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Graph Capacity

Graph G

vertex set V (G) (channel input symbols),
edge set E(G) (pairs of distinct confusable symbols).

A ⊆ V (G) independent set if

x, x′ ∈ A =⇒ x � x′

Independence number

α(G) = max{|A| : A ⊆ V (G) independent set}

Strong power Gn

V (Gn) = V (G)× V (G) · · · × V (G) = V (G)n

x 6= x′ connected in Gn if entrywise either equal or connected in G

(x1, x2, . . . , xn) ∼ (x′1, x
′
2, . . . , x

′
n) ⇐⇒ ∀ i , xi ∼ x′i or xi = x′i

i.e., confusable sequences.
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Graph Capacity

So,

α(Gn) is the largest size of an independent set in Gn or

α(Gn) is the largest size of a zero-error code.

Graph Capacity

C(G) := lim
n→∞

1

n
logα(Gn)

C(G) is highest asymptotic rate achievable with zero-error codes.

Note: the limit exists due to Fekete’s lemma since

α(Gn+m) ≥ α(Gn)α(Gm)
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Graph capacity: examples

Three meaningful examples

Square Pentagon Heptagon

C(G) = 2 C(G) = log
√

5 C(G)
(Shannon ’56) (Lovász ’79) unknown
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Square: easy case

0 1

23

Achievability:

α(G) = 2 =⇒ α(Gn) ≥ 2n =⇒ C(G) ≥ 1 bit/ch. use

Converse
Each sequence symbol either in A or in B
2n “classes” of codewords
Codewords in each class are all confusable.
Pigeonhole principle: α(Gn) ≤ 2n, so C(G) ≤ 1
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More general

[¡+-¿] Using the same reasoning

Clique: subset of V (G) completely connected in G (independent
set in Ḡ)

Assume G can be covered with k cliques

Then α(Gn) ≤ kn, and C(G) ≤ log(k)

Theorem

C(G) ≤ log χ̄(G)

where

χ̄(G) = clique covering number of G

= minimum number of cliques to cover G

= chromatic number of Ḡ

=: χ(Ḡ)
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Extension to fractional covers

A set of cliques A1, . . . , Ak ⊆ V (G) is a factional cover of G with
weights λ1, λ2, . . . λk if∑

i:v∈Ai

λi ≥ 1 , ∀v ∈ V (G)

Fractional clique covering number

χ̄∗(G) = min
∑
i

λi

minimum over fractional clique covers (λ1, λ2, . . . λk = weights).

Theorem

C(G) ≤ log χ̄∗(G)
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Proof

Let λ1, λ2, . . . λk achieve χ̄∗(G) =
∑

i λi.
Define a probability distribution q on cliques

qi =
λi∑
j λj

If A is random clique ∼ q then

P[v ∈ A] ≥ 1∑
i λi

Pick random clique A in Gn as cartesian product of i.i.d. ∼ q
cliques. Then,

P[v ∈ A] ≥

(∑
i

λi

)−n
, ∀v ∈ V (Gn)
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proof

So

E[|C ∩A|] ≥ |C| ·
(∑

i

λi

)−n
If C is a zero-error code

1 ≥ max
A clique

|C ∩A|

≥ E[|C ∩A|]

≥ |C| ·
(∑

i

λi

)−n
Hence,

α(Gn) ≤

(∑
i

λi

)n
= χ̄∗(G)n

M. Dalai Channel reliability: from ordinary to zero-error capacity ESIT 2017 36/67



proof

So

E[|C ∩A|] ≥ |C| ·
(∑

i

λi

)−n
If C is a zero-error code

1 ≥ max
A clique

|C ∩A|

≥ E[|C ∩A|]

≥ |C| ·
(∑

i

λi

)−n
Hence,

α(Gn) ≤

(∑
i

λi

)n
= χ̄∗(G)n

M. Dalai Channel reliability: from ordinary to zero-error capacity ESIT 2017 36/67



proof

So

E[|C ∩A|] ≥ |C| ·
(∑

i

λi

)−n
If C is a zero-error code

1 ≥ max
A clique

|C ∩A|

≥ E[|C ∩A|]

≥ |C| ·
(∑

i

λi

)−n
Hence,

α(Gn) ≤

(∑
i

λi

)n
= χ̄∗(G)n

M. Dalai Channel reliability: from ordinary to zero-error capacity ESIT 2017 36/67



Comparison with R∞

Setting Xy = {x : Wx(y) > 0}, Yx = {y : Wx(y) > 0}

R∞(W ) = log min
Q

max
x

1∑
y∈Yx Q(y)

Setting q(y) = maxx
Q(y)∑

y′∈Yx Q(y′)

R∞(W ) = log min
q

∑
y

q(y)

under constraints

q(y) ≥ 0 ,
∑
y∈Yx

q(y) ≥ 1

Like a fractional clique cover, every output symbol a clique on G.
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Comparison with R∞

Indeed R∞ does not only depend on G(W )

W1 W2 G(W1) = G(W2)
1

2

3

a

b

c

,

1

2

3

a

b

c

=⇒ 1

2

3

R∞(W1) = log 3/2 R∞(W2) = 0 but C(G) = 0

To bound C(G) pick the most useful W with G(W ) = G.

That is, define one output symbol for each clique in G. Then

R∞(Wopt) = log χ̄∗(G)
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Pentagon

G G2

α(G) = 2

Achievability:

α(G2) = 5 =⇒ C(G) ≥ 1

2
log 5

Converse: fractional clique cover with 5 cliques, weight 1/2 each

χ̄∗(G) = 5/2 =⇒ C(G) ≤ log(5/2)

Lovász (1979): C(G) = 1
2 log 5
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Lovász theta function

Lovász’s idea

Graph representation: map vertices x to unit norm ux ∈ Rd so that

x � x′ =⇒ ux ⊥ ux′

An independent set A is mapped to an orthonormal basis

For any unit norm c and independent set A

1 ≥ ‖c‖2 ≥
∑
x∈A
|〈ux|c〉|2 ≥ |A|min

x
|〈ux|c〉|2

Take {ux} and c optimally; if

θ(G) =

(
max
{ux},c

min
x
|〈ux|c〉|2

)−1
then

α(G) ≤ θ
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Lovász theta function

Tensorization

Note 〈a⊗ b|c⊗ d〉 = 〈a|c〉〈b|d〉
So, if {ux} representation of G used with c gives

α(G) ≤ θ(G)

then {ux}⊗n representation of Gn used with c⊗n gives

α(Gn) ≤ θ(G)n

Taking lim 1
n log (·)

C(G) ≤ log θ(G)
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Lovász theta function: pentagon

Lovász’s umbrella

c

θ =
√

5

C(G) ≤ log
√

5
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Lovász’ Bound, channel interpretation

Orthonormal Representation:
A set of unit norm vectors {ux}, x ∈ X

x, x′ not confusable =⇒ 〈ux|ux′〉 = 0

Trivial Representation: ux =
√
Wx

Value (log domain):

V ({ux}) = min
c

max
x

log
1

|〈ux|c〉|2
(‖c‖ = 1)

c is the handle. Note: |〈ux|c〉|2 ≥ e−V ({ux}), ∀x
The bound:

C0 ≤ V ({ux})
Theta function (log domain):

ϑ = min
{ux}

V ({ux})
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Lovász’ Bound, channel interpretation

Representation for W

Vectors x = (x1, . . . , xn) −→ ux = ux1 ⊗ · · · ⊗ uxn
Handle . . . . . . c = c ⊗ · · · ⊗ c

ux1

uxm

· · ·

uxM

c

For a zero-error code, the vectors uxm are pairwise orthogonal

|〈uxm |c〉|2 ≤ 1/M for at least one m, because ‖c‖ = 1

|〈uxm |c〉|2 ≥ e−nV ({ux}) by definition of V ({ux})
Hence M ≤ enV ({ux})
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Lovász’ Bound and the Sphere-Packing Bound

Analogies

Sphere-Packing vs Lovász

Wx1

WxM

Q⊗n

Wxm(·)
· · ·

Yn
Y1 YM

ux1

uxm· · ·

uxM

c⊗n

We note the following analogies√
Wxm ↔ uxm√

Q ↔ c

Q⊗n(Ym) ↔ |〈uxm |c⊗n〉|2
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Sphere-Packing Bound as an Information Radius

R

E(R)

0 C

What about min-max expressions?
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Sphere-Packing Bound as an Information Radius

R

E(R)

0 CRρ

Remind
Rρ = min

Q
max
x

Dα(Wx||Q), α = 1/(1 + ρ)

Dα(Q1||Q2) = 1
α−1 log

∑
y Q1(y)αQ2(y)1−α is the Rényi divergence
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Sphere-Packing Bound as an Information Radius

R

E(R)

0 CR1

Setting ρ = 1, cutoff rate:

R1 = min
Q

max
x

log
1(∑

y

√
Wx(y)Q(y)

)2
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Sphere-Packing Bound as an Information Radius

R

E(R)

0 CR1

Setting ρ = 1, cutoff rate:

R1 = min
Q

max
x

log
1(∑

y

√
Wx(y)Q(y)

)2
= V ({ux}) if ux =

√
W (·|x)
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From Classical to Classical-Quantum

Representations, values and cutoff rates

So,
ux =

√
Wx =⇒ V ({ux}) = cutoff rate

If all ux have non-negative components we always get the cutoff
rate of some classical channel

Lovász’ optimal ux can (often will!) have negative components.

Intuition (?)

Use wave functions of quantum physics to play the role of
√
Wx
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Classical-Quantum Channels

Definition

Basic Idea
Wx now density operator

Wx is a positive semi-definite matrix with unit trace

Classical channels: all wx are diagonal

Wx =

 Wx(1) 0 · · · 0
0 Wx(2) · · · 0

0 · · · . . .


Pure-State Channel: all Wx are rank-one matrices

Wx = |ux〉〈ux|
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Classical-Quantum Channels: Definitions

Memoryless extension:

x = (x1, . . . , xn)→Wx = Wx1 ⊗ · · · ⊗Wxn

Code: M codewords {x1,x2, . . . ,xM} ⊂ X n

Decoder: a POVM, collection of M positive operators
{Π1, . . . ,ΠM} (positive semi-definite matrices) such that

I −
M∑
m=1

Πm ≥ 0

Classical deterministic case: Πm diagonal {0, 1}-valued matrix,
indicator function of Ym

Probability of error: Pe|m = 1− Tr(ΠmWxm)

Capacities and reliability: as before.
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Note on probabilities

If A = |a〉〈a| and B = |b〉〈b| (pure states)

TrAB = |〈a|b〉|2

If
A =

∑
i

αi|ai〉〈ai| B =
∑
j

βj |bj〉〈bj |

then
TrAB =

∑
i,j

αiβj |〈ai|bj〉|2
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Results on C and E(R)?

Capacity

Hausladen-Jozsa-Schumacher-Westmoreland-Wootters: (1996)
pure states

Holevo, Schumacher-Westmorelan (1998): general states

E(R) - achievability

Burnashev-Holevo (1998): random coding for pure states

Holevo (2000): expurgate bound (general case)

Hayashi (2006): best “random coding” bound for mixed states

Missing: conjectured Gallager-like random coding exponent!

E(R) - converse

Dalai (2012): sphere-packing

(using Berlekamp): zero-rate upper bound
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Sphere Packing for Classical-Quantum Channels

Consider again binary hypothesis testing

Try both MIT approach and Harountunian’s approach
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Quantum Binary Hypothesis Testing

Here σ0, σ1 are density operators, with

Pe|σ0 = Trσ⊗n0 (I −Π) Pe|σ1 = Trσ⊗n1 Π

Error exponents:

− 1

n
logPe|σ0 = −µ(s) + sµ′(s) + o(1)

− 1

n
logPe|σ1 = −µ(s)− (1− s)µ′(s) + o(1)

where

µ(s) = log Trσ1−s0 σs1.

= −sD1−s(σ0‖σ1)

and

Dα(ρ‖σ) =
1

α− 1
Tr ρασ1−α
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Quantum Binary Hypothesis Testing

Upon differentiation, one finds for example for Pe|σ0

− 1

n
logPe|σ0 = − log Tr(σ1−s0 σs1)+Tr

[
σ1−s0 σs1

Trσ1−s0 σs1
(log σs1 − log σs0)

]
+o(1)

When σ0 and σ1 commute, define

σs =
σ1−s0 σs1

Trσ1−s0 σs1

and use log σs1 − log σs0 = log σ1−s0 σs1 − log σ0.

This gives for example (same for Pe|σ1)

− 1

n
logPe|σ0 = Trσs(log σs − log σ0) + o(1)

= D(σs‖σ0) + o(1).

But if σ0, σ1 do not commute, this form does not hold!
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Quantum Binary Hypothesis Testing

Example

Non-orthogonal pure states σ0 = |ψ0〉〈ψ0| and σ1 = |ψ1〉〈ψ1|
Since σ1−s0 = σ0 and σs1 = σ1

µ(s) = log |〈ψ0|ψ1〉|2

At least one of the two error exponents is not larger than
− log |〈ψ0|ψ1〉|2.
Thus, error exponents cannot be expressed as D(σs‖σi)

D(ρ‖σi) =

{
0 ρ = σi

+∞ ρ 6= σi
, i = 0, 1 ,

when σ0 and σ1 are pure.
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Classical-quantum sphere packing

Channel and coding scheme

Wx are density operators (classical case: diagonal)

M codewords {x1, . . .xM}, where x 7→Wx = Wx1 ⊗ · · · ⊗Wxn

Decoder: POVM {Π1, . . . ,ΠM} and Pm′|m = TrWxmΠm′

MIT proof

Extends using quantum Rényi divergence Dα(ρ‖σ)

Matches achievability at high rates for pure-state channels

Auxiliary Q does not induce auxiliary channel V

Haroutunian’s approach

Extends using quantum KL divergence

Trivial bound for pure-state channels:

E(R,P ) ≤ ∞, R < I(P,W )
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Haroutunian’s bound for pure-state channels

The bound:

1

n
log

1

Pe|Wxm

≤ inf
V :I(P,V )<R

D(V ‖W |P )(1 + o(1))

Remember, for pure σ

D(ρ‖σ) =

{
0 ρ = σ

+∞ ρ 6= σ
,

If R < I(P,W ) then I(P, V ) < I(P,W )

Thus, we can only optimize over V such that Vx 6= Wx for some
“used” x

Any such V gives D(V ‖W |P ) =∞
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What is the problem here?

What happened

Using a constant Q we get a good bound

Using an optimal channel V we don’t

Impossible... a constant Q is a “dummy channel” with Vx = Q

MIT Proof

Dummy Q

Converse for Q of the form TrQΠm ≤ e−nR

Lower bound TrWxmΠm using BHT between Q and Wxm in the
regime where both error probabilities vanish exponentially

Haroutunian

General channel V with I(P, V ) < R

Converse for V of the form TrVxmΠm = o(1)

BHT between Vxm and Wxm in Stein’s regime
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MIT Proof
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Converse for Q of the form TrQΠm ≤ e−nR

Lower bound TrWxmΠm using BHT between Q and Wxm in the
regime where both error probabilities vanish exponentially

Haroutunian

General channel V with I(P, V ) < R

Converse for V of the form TrVxmΠm = o(1) ... too weak

BHT between Vxm and Wxm in Stein’s regime
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Reconsidering a general V

What we should do

Take an auxiliary V with I(P, V ) < R

Compute the correct strong converse TrVxmΠm = e−nEsc(R,P )

BHT between Vxm and Wxm in the regime where both error
probabilities vanish exponentially

Classical case

Choosing I(P, V ) = 0 (MIT) or I(P, V ) = R− ε (Haroutunian)
makes no difference

No other choice can do better (I guess... list decoding)

The strong converse exponent for V , and the BHT between Vxm

and Wxm both involve Rény divergences
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Reconsidering a general V

Classical-Quantum

Choosing I(P, V ) = 0 (MIT) or I(P, V ) = R− ε (Haroutunian)
does make a difference

Is I(P, V ) = 0 really optimal?
→ No matching achievability for mixed state channels.

Strong converse exponent for c-q channels derived only very
recently (Mosonyi and Ogawa 2014).

Unlike the BHT between Vxm and Wxm , strong converse involves
so-called “sandwiched” Rényi divergence

D̃α(ρ, σ) =
1

α− 1
log Tr

(
σ

1−α
2α ρσ

1−α
2α

)α
.
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Classical-Quantum Channels: Reliability Function

R

E(R)

0
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Classical-Quantum Channels: Reliability Function

R

E(R)

0

Sphere-Packing Bound
E(R) ≤ Esp(R)

Sphere packing

Esp(R) = sup
ρ≥0

max
P

− log Tr

(∑
x

P (x)W 1/(1+ρ)
x

)1+ρ

− ρR
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Classical-Quantum Channels: Reliability Function

R

E(R)

0 Rρ

Minmax characterization

Rρ = min
F

max
x

Dα(Wx||F ), α = 1/(1 + ρ)

where F runs over density operators and
Dα(F1||F2) = 1

α−1 log Tr(Fα1 F
1−α
2 ) is the Rényi divergence
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Classical-Quantum Channels: Reliability Function

R

E(R)

0 R∞

When ρ→∞
R∞ = min

F
max
x

log
1

Tr (W 0
xF )

where W 0
x is the projector onto the support of Wx
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Classical-Quantum Channels: Reliability Function

R

E(R)

0 R∞

For pure-state channels Wx = |ux〉〈ux|
Using pure-states F = |f〉〈f | we have Tr

(
W 0
xF
)

= |〈ux|f〉|2.
So,

R∞ ≤ min
f

max
x

log
1

|〈ux|f〉|2

= V ({ux})
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Lovász and the Sphere Packing

Orthonormal Representations and Auxiliary Channels

For any representation {ux}, the classical-quantum channel with
pure-states Wx = |ux〉〈ux| satisfies R∞ ≤ V ({ux})

We can define
ϑsp = min

{Wx}
R∞ (1)

where we minimize over all channels such that TrWxWx′ = 0 if x
and x′ are not confusable

Then
C0 ≤ ϑsp ≤ ϑ

Actually additional results in Lovász’ paper imply ϑ ≤ ϑsp and
hence ϑsp = ϑ.

So, pure-state channels achieve the optimum in (1) and for some
optimal channel some pure state F = |f〉〈f | achieves R∞
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optimal channel some pure state F = |f〉〈f | achieves R∞
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Cutoff rates and R∞

R

E(R)

0

But... where are those cutoff rates?
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Cutoff rates and R∞

R

E(R)

0 R1

Sphere-Packing
for Wx(y)

But... where are those cutoff rates?

We had previously identified R1 with V ({
√
Wx})

But then we ended up with a relation between ϑ and R∞

M. Dalai Channel reliability: from ordinary to zero-error capacity ESIT 2017 63/67



Cutoff rates and R∞

R

E(R)

0 R1

Sphere-Packing
for pure states
ux =

√
Wx

But... where are those cutoff rates?

Mathematically, this is due to the fact that the cutoff rate of a
channel W always equals the R∞ rate of a pure-state channel with
state vectors ux =

√
Wx

The true meaning of this... I do not know, but this sounds
important
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