

Introduction

• Goal: looking for a practical coding method for a two-user Gaussian broadcast channel

• **Broadcast channel:** simultaneous communication of a single source with multiple receivers

• Bergsman theorem: for some p(x, v), capacity region of a degraded BC is

$$R_z \leq I(V;Z), \quad R_y \leq I(X;Y|V)$$

• Gaussian broadcast channel

$$Y = AX + N_y, \quad Z = BX + N_z$$

- a power constraint input $\mathbb{E}(|X|^2) \leq P$
- wlog, for fixed $|A| > |B| \implies$ degraded BC

$$\bigcup_{\alpha \in [0,1]} \left\{ \begin{array}{l} R_y \leq \frac{1}{2} \log_2 \left[1 + \alpha |A|^2 \frac{P}{N} \right] \\ R_z \leq \frac{1}{2} \log_2 \left[1 + \frac{(1-\alpha)|B|^2 P}{N+\alpha|B|^2 P} \right] \end{array} \right\}$$

• α is the fraction of input power allocated to user *Y*

• boundary is achieved by a Gaussian codebook

 $X = \sqrt{\alpha P} X_{y} + \sqrt{\bar{\alpha} P} X_{z} \quad (X_{y}, X_{z}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{2})$

Bad news: cannot have a Gaussian codebook in practice!

Disjoint LDPC Coding for Gaussian Broadcast Channels

Mahdi Ramezani and Masoud Ardakani Department of Electrical and Computer Engineering University of Alberta, Edmonton, Alberta, Canada

Using Binary Codes

- **good news:** using a binary codebook at low SNRs, we will not lose too much! [1]
- (X_y, X_z) is uniformly picked from $\{+1, -1\}^2$

$$X = \sqrt{\alpha P} X_y + \sqrt{\bar{\alpha} P} X_z$$

• each user has an LDPC ensemble

- optimal MAP detection at user *Y*
- mapper node handles $X = \sqrt{\alpha P} X_{y} + \sqrt{\bar{\alpha} P} X_{z}$
- mapper node is in essence an *interference canceler* [1]

Drawbacks

- joint decoding at both users
- both codes are required at the receivers

Question What if we could get rid of the mapper node?

Bit-Interleaved Coded Modulation (BICM)

is used.

Proposed Method

- and

• Caire [2] BICM performs extremely close to the optimal decoder with a lower complexity if Gray labeling

• using Gray labeling, there is a minor dependency among label bits

• superposition coding is a 4-PAM-like modulation with binary labeling

• LDPC codes are self-interleaved • can apply Gray labeling

$$X = \sqrt{\alpha P} X_{y} + \sqrt{\overline{\alpha} P} X_{z} X_{y}, \ \alpha \ge \frac{1}{2} \quad X_{z} \quad X_{y}$$

$$01 \quad 11 \quad 10 \quad 00$$

$$-\sqrt{\alpha} - \sqrt{\overline{\alpha}} \quad \sqrt{\overline{\alpha}} - \sqrt{\alpha} \sqrt{\alpha} - \sqrt{\overline{\alpha}} \quad \sqrt{\alpha} + \sqrt{\overline{\alpha}}$$

$$X = \sqrt{\alpha P} X_{y} X_{z} + \sqrt{\overline{\alpha} P} X_{z}, \ \alpha \le \frac{1}{2} \quad X_{y} \quad X_{z}$$

$$01 \quad 11 \quad 10 \quad 00$$

$$-\sqrt{\alpha} - \sqrt{\overline{\alpha}} \quad \sqrt{\alpha} - \sqrt{\overline{\alpha}} \quad \sqrt{\alpha} - \sqrt{\overline{\alpha}} \quad \sqrt{\alpha} + \sqrt{\overline{\alpha}}$$

• trying to reduce the dependency of code bits • does not exactly match superposition coding • may get a non-convex region due to nonlinearity • due to minor dependency, we propose to remove mapper nodes

• each user only needs to have its own code • no need for joint decoding • compared to the optimal method, decoding complex-

ity is decreased at least by a factor of 50%

• most of the region is covered by the proposed method • as expected, the region is not convex since we adaptively force labeling to be Gray!

Simulation Results

References

[1] P. Berlin and D. Tuninetti, "LDPC codes for fading gaussian broadcast channels," IEEE Trans. Inf. The*ory*, vol. 51, no. 6, pp. 2173–2182, Jun. 2005. [2] G. Caire, G. Taricco, and E. Biglieri, "Bit-interleaved

coded modulation," IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, May 1998.