Fourth Van Der Meulen Seminar IEEE Benclux IT Chapter
Eindhoven University of Technology
Dec. 4th, 2012

DIRTY PAPER CODING AND DISTRIBUTED SOURCE CODING

TWO VIEWS OF COMBINED SOURCE AND CHANNEL CODTNG

Max H. M. Costa
University of Campinas - Unicamp

Summary

- INTRODUCTION
- DIRTY PAPER CODING
- CODING FOR MEMORIES WITH DEFECTS
- PARTITTONED LTNEAR BLOCK CODES
- COSET CODES
- DISTRIBUTED SOURCE CODING
- BINNING XS QUANTIZATION
- COSET CODES
- DISCUSSION

Information Theory
 Some seminal papers by Shannon

- Channel Coding, 1948
- Source Coding, 1948, 1958
- Cryptography, 1949

Channel coding - example

Capacity: 1 bit/transmission Best code: Use only inputs $\{1,3\}$

Exercise moderation!!

Channel coding

Typically need larger codes, $n \gg 1$

Source coding:
 Get good representation of source with few bits

Introduction

CHANNEL CODING

$$
\begin{aligned}
& \mathrm{C}=\max _{\mathrm{p}(\mathrm{x})} \mathrm{I}(\mathrm{X} ; \mathrm{Y}) \\
& \hline
\end{aligned}
$$

SOURCE CODTNG

$$
R(D)=\min _{p(\hat{x} \mid x): E d(x, \hat{x})<D}
$$

Source and channel coding in communication system

Joint source and channel coding

Can be simple if source and channel are matched
Gaussian noise

Rate distortion theory

Example: Gaussian source with memory

$D(R)=2^{-2 R} \sigma_{x}^{2}$
or
$R(D)=\frac{1}{2} \log _{2}\left(\frac{\sigma_{x}^{2}}{D}\right)$
$\therefore \quad \operatorname{Max} \operatorname{SNR}(d B)=10 \log _{10}\left(\frac{\sigma_{x}^{2}}{D(R)}\right)=20 R \log _{10} 2 \cong 6 R$

RMS distortion

Dirty paper coding

CODTNG FOR MEMORTES WITH REEECTS

"

Binning: Randomly distribute all 2^{n} sequences into $2^{\text {nR }}$ "bins"

Bin ${ }_{2}^{n R}$

\# of sequences in each bin $=\frac{2^{n}}{2^{n R}}=2^{n(1-R)}$
E (\# of matching sequences in a bin $)=2^{n(1-R)} \cdot 2^{-n \alpha}$

$$
=2^{n(1-\alpha-R)}
$$

Note:

If $\mathbf{R}<1-\alpha \rightarrow$ guaranteed to have a match

Thus Capacity =1- $\boldsymbol{\alpha}$ bits per memory cell

(same as if receiver knew defect positions)

Model

General şolution (Gelfand and Pinsker):
$C=\max (I(U ; Y)-I(U ; S))$
$\mathrm{p}(\mathrm{u}, \mathrm{x} \mid \mathrm{s})$

In the example: $\mathrm{U}=\mathrm{Y}$

Writing on dirty paper:

In essence , two simple ideas:

1. One toothbrush in every corner
2. Estimates must be orthogonal to estimate error

Analog version

$C=\max _{\mathbf{p}(\mathbf{u}, \mathbf{x} \mid \mathbf{s})}(I(U ; Y)-I(U ; S))$
Adopt $\mathrm{U}=\mathrm{X}+\alpha \mathrm{S}, \quad$ maximize over α
Result:
$\mathrm{C}=1 / 2 \log (1+\mathrm{P} / \mathrm{N}), \quad$ independently of Q
Obtained with $\alpha=\mathrm{P} /(\mathrm{P}+\mathrm{N})$

Geometrical explanation:

$\mathrm{U}=\mathrm{X}+\boldsymbol{\alpha} \mathrm{S}$

Approximate methods

QTM (QUANTIZATION INDEX MODULATION)

$\mathrm{f}_{\Delta}(\mathrm{y})=\bmod (\mathrm{y}+\Delta / 2, \Delta)-\Delta / 2$
Encoding:

$$
\mathrm{X}=\mathrm{f}_{\Delta}(\mathrm{U}-\mathrm{S})=\mathrm{U}-\mathrm{S}-\mathrm{k} \Delta, \quad \mathrm{k} \text { integer }
$$

Decoding: $\quad \hat{W}=f_{\Delta}(Y)=f_{\Delta}(\mathrm{U}-\mathrm{S}-\mathrm{k} \Delta+\mathrm{S}+\mathrm{Z})=\mathrm{f}_{\Delta}(\mathrm{U}+\mathrm{Z})$

Watermark example

Images for host signal and watermark

Images for received host signal and received watermark

Variations

- PARTITIONER LINEAR BLOCK CORES (HEEGARD, 1983)
- COSET CORES (FORNEY, RAMCHANDRAN)
- APPLICATIONS WITH BCH CODES, REED-SOLOMON CODES
- APPLICATIONS WITH LATTICES
- APPLICATIONS WITH LDPC, LDGM

Distributed source coding

Simple example

- X and Y vectors of size 3
- Hamming distance ≤ 1
- Case 1: Y known by all (i.e., encoder and decoder)

$$
R=H(X \mid Y)=2 \text { bits (just send } X+Y \text {) }
$$

- Case 2: Y known only by decoder - use coset codes Here too $\mathrm{R}=\mathbf{2}$ bits Send index of coset of X (use a repetition code)
Decoding: Using coset of X and Y, recover X exactly

Repetition code - standard array

Code (coset 0)
Coset 1
Coset 2
Coset 3

000
001
010
100

111
110
101
011

Can get X from Y and coset number

Another simple example:

Let X and Y be unif. distributed length 7 binary sequences Hamming distance $(X, Y) \leq 1$
$\mathrm{H}(\mathrm{X})=\mathrm{H}(\mathrm{Y})=7$ bits
$\mathbf{H}(\mathbf{X} \mid \mathbf{Y})=\mathbf{H}(\mathbf{Y} \mid \mathbf{X})=\mathbf{3}$ bits
$H(X, Y)=10$ bits

Rate(X)

Encoding: use 3 bits (8 possible cosets)
To encode X use coset of a Hamming (7,4) code

Decoding:

Based on coset number and on Y, find X

Binning operation

Figure credit: K. Ramchandran

Dual operations

- QUANTIZATION integer division resulting in quotient
- BINNING
integer division resulting in remainder

Applications

: DIGITAL WATERMARKING

- STEGANOGRAPHY
- CELLULAR TELEPHONY (DOWNLTNK)
- COGNITTYE RADIO
- RADTO BROADCASTING

DTGITAL-TX OVER ANALOG-TX (CHINOOK COMM., BOSTON AREA) RIGITAL RADIO OVER FM RADIO (ALTERNATIVE TO IBOC AND DBM)

- XIREO COMPRESSION (DISTRIBUTED SOURCE CODING)
- XIREO SYNCHRONIZATION

Information theory is alive and well !

