Fourth Van Der Meulen Seminar IEEE Benelux IT Chapter Eindhoven University of Technology

Dec. 4th, 2012

DIRTY PAPER CODING AND DISTRIBUTED SOURCE CODING

TWO VIEWS OF COMBINED SOURCE AND CHANNEL CODING

Max H. M. Costa
University of Campinas - Unicamp

Summary

- INTRODUCTION
- DIRTY PAPER CODING
 - CODING FOR MEMORIES WITH DEFECTS
 - PARTITIONED LINEAR BLOCK CODES
 - COSET CODES
- DISTRIBUTED SOURCE CODING
 - BINNING VS QUANTIZATION
 - COSET CODES
- DISCUSSION

Information Theory Some seminal papers by Shannon

- Channel Coding, 1948
- Source Coding, 1948, 1958
- Cryptography, 1949

Channel coding - example

Capacity: 1 bit/transmission

Best code: Use only inputs {1, 3}

Exercise moderation!!

Channel coding

Typically need larger codes, n >> 1

Similar to sphere paching

Source coding: Get good representation of source with few bits

Similar to sphere covering

Introduction

CHANNEL CODING

SOURCE CODING

$$C = \max_{p(x)} I(X;Y)$$

$$R(D) = \min_{p(x'|x) : E d(x, x') < D} (x'|x) : E d(x, x') < D$$

Source and channel coding in communication system

Joint source and channel coding

Can be simple if source and channel are matched

Rate distortion theory

Example: Gaussian source with memory

$$D(R) = 2^{-2R} \sigma_x^2$$

or

$$R(D) = \frac{1}{2} \log_2 \left(\frac{\sigma_x^2}{D} \right)$$

$$\therefore Max SNR(dB) = 10 \log_{10} \left(\frac{\sigma_x^2}{D(R)} \right) = 20R \log_{10} 2 \cong 6R$$

RMS distortion

Dirty paper coding

CODING FOR MEMORIES WITH DEFECTS

"stuck-at" defects – probability α

Binning: Randomly distribute all 2ⁿ sequences into 2^{nR} "bins"

Bin 1 Bin 2

• • •

Bin nR 2

of sequences in each bin =
$$\frac{2^n}{2^{nR}} = 2^{n(1-R)}$$

$$E$$
 (# of matching sequences in a bin) = $2^{n(1\text{-}R)}$. $2^{\text{-}n\alpha}$

$$= 2^{n(1-\alpha-R)}$$

Note:

If $R < 1-\alpha \rightarrow$ guaranteed to have a match

Thus Capacity = $1-\alpha$ bits per memory cell

(same as if receiver knew defect positions)

Model

General solution (Gelfand and Pinsker):

$$C = \max(I(U;Y) - I(U;S))$$
$$p(u,x|s)$$

In the example: U = Y

Writing on dirty paper:

In essence, two simple ideas:

1. One toothbrush in every corner

2. Estimates must be orthogonal to estimate error

Analog version

$$C = \max (I(U;Y) - I(U;S))$$
$$p(u,x|s)$$

Adopt $U = X + \alpha S$, maximize over α

Result:

$$C = \frac{1}{2} \log (1 + P/N)$$
, independently of Q

Obtained with
$$\alpha = P/(P+N)$$

Approximate methods

QIM (QUANTIZATION INDEX MODULATION)

$$f_{\Delta}(y) = \text{mod}(y + \Delta/2, \Delta) - \Delta/2$$

Encoding: $X = f_{\Delta}(U-S) = U - S - k \Delta$, k integer

Decoding: $\hat{W} = f_{\Delta}(Y) = f_{\Delta}(U-S-k \Delta + S+Z) = f_{\Delta}(U+Z)$

Watermark example

Images for host signal and watermark

Images for received host signal and received watermark

Variations

- PARTITIONED LINEAR BLOCK CODES (HEEGARD, 1983)
- COSET CODES (FORNEY, RAMCHANDRAN)
- APPLICATIONS WITH BCH CODES, REED-SOLOMON CODES
- APPLICATIONS WITH LATTICES
- APPLICATIONS WITH LDPC, LDGM

Distributed source coding

$$R(D) = \min (I(X; W) - I(Y; W))$$
$$p(w|x) : Ed(X,X) < D$$

Simple example

- X and Y vectors of size 3
- Hamming distance ≤ 1
- Case 1: Y known by all (i.e., encoder and decoder)

$$R = H(X|Y) = 2 bits (just send X+Y)$$

Case 2: Y known only by decoder – use coset codes

Here too R = 2 bits

Send index of coset of X (use a repetition code)

Decoding: Using coset of X and Y, recover X exactly

Repetition code – standard array

Code (coset 0) Coset 1	000	111
	001	110
Coset 2	010	101
Coset 3	100	011

Can get X from Y and coset number

Another simple example:

Let X and Y be unif. distributed length 7 binary sequences Hamming distance $(X,Y) \le 1$

Encoding: use 3 bits (8 possible cosets)

To encode X use coset of a Hamming (7,4) code

Decoding:

Based on coset number and on Y, find X

Binning operation

Figure credit: K. Ramchandran

Dual operations

QUANTIZATION

integer division resulting in quotient

BINNING

integer division resulting in remainder

Applications

- DIGITAL WATERMARKING
- STEGANOGRAPHY
- CELLULAR TELEPHONY (DOWNLINK)
- COGNITIVE RADIO
- RADIO BROADCASTING
 DIGITAL-TV OVER ANALOG-TV (CHINOOK COMM., BOSTON AREA)
 DIGITAL RADIO OVER FM RADIO (ALTERNATIVE TO IBOC AND DRM)
- VIDEO COMPRESSION (DISTRIBUTED SOURCE CODING)
- VIDEO SYNCHRONIZATION

Information theory is alive and well!