

Bounds on the Capacity of Optical Fiber Channels

Gerhard Kramer (TUM) based on joint work with René-Jean Essiambre (Bell Labs), Mansoor Yousefi (Telecom Paristech) and Frank Kschischang (Univ. Toronto)

> IEEE ITSoc Distinguished Lecture Linköping University, Sweden June 2, 2016

Claude Elwood Shannon Apr 30, 1916 – Feb 24, 2001

1) Introduction and Preliminaries

Main Message

An upper bound on the spectral efficiency of a standard optical fiber model

 $\eta \leq \log(1 + SNR)$ [bits/sec/Hz]

- this is the first upper bound on a "full" model;
- the bound is tight at low SNR;
- the bound is likely extremely loose at high SNR; but it's better than an upper bound of ∞

ПΠ

Preliminaries: Information Theory

Entropy and Mutual Information: consider random variables X,Y with joint distribution P_{X,Y}(.)

$$H(X) = E\left[-\log P_X(X)\right]^{\text{discrete } X} = \sum_{a:P_X(a)\neq 0} - P_X(a)\log P_X(a)$$
$$H(X|Y) = E\left[-\log P_{X|Y}(X|Y)\right]$$
$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

 Note: if X is a continuous random variable (e.g., Gaussian) then one calls H(X) a differential entropy and (usually) uses the notation h(X)

ТШ

Gaussian Random Variables

Example: Suppose X,Y are jointly Gaussian. Then we have

$$h(X) = \frac{1}{2} \log(2\pi e \operatorname{Var}[X])$$
$$h(X|Y) = \frac{1}{2} \log(2\pi e \operatorname{Var}[X](1-\rho^2))$$
$$I(X;Y) = \frac{1}{2} \log\left(\frac{1}{1-\rho^2}\right)$$

- Var[X] is the variance of X
- ρ is the correlation coefficient of X and Y; instructive cases: $\rho = 0, \pm 1$

Capacity

- Capacity C of a channel P_{Y|X}(.) is the maximum I(X;Y) under constraints put on X,Y
- Example: real-alphabet additive white Gaussian noise (AWGN) channel

$$Y = X + Z$$

with Var[Z]=N and an input power constraint $E[X^2] \le P$ has

$$I(X;Y) \le C = \frac{1}{2}\log\left(1+\frac{P}{N}\right)$$

- Complex alphabet AWGN channels: C = log(1+P/N)
- For complex alphabets, N is usually taken as N₀W where N₀ is the (one-sided) noise PSD and W is the bandwidth
- Spectral efficiency is $\eta = C$ if one uses sinc-pulses of bandwidth W

Capacity (continued)

Notes x-axis: energy per information bit y-axis: capacity in bits per symbol energy efficiency: slope of capacity two regimes: energy efficient high-rate

- parallel channels (multi-mode) let one increase energy efficiency and rate

2) Fiber Communication

Figure courtesy of R.-J. Essiambre

Demand and Supply

Data traffic is growing at a faster pace than fiber capacity

Figure courtesy of R.-J. Essiambre

Questions

- There is much **dark** (unused) fiber, so what's the problem?
- Cost increases in proportion to the data rate. Example: Want 100 Mbps rather current 10 Mbps? Pay 10x the money.
- This may prevent further innovation
- So what should we do?
 Improve the networks (perhaps the first step) and (ultimately) the fiber channel capacity

3) Fiber Channel(s)

- Single-Mode Fiber (SMF): a small core that carries one mode of light
- Here one mode has 2 complex dimensions: two polarizations
- Theory papers often consider one complex dimension; the general case is interesting too of course (see below)
- In fact, a hot topic in the fiber community is MIMO fiber

• Maxwell's equations and low-order approximations* result in a generalized nonlinear Schrödinger equation (GNSE):

*See Ch. 2 in G.P. Agrawal, "Nonlinear Fiber Optics", 3rd ed., 2001

time signal:

- To simulate, split the fiber length z* into K small steps (Δz) and the time T into L small steps (Δt)
- Split-step Fourier method at distance z_k, k=0,1,...,K

- Ideal Raman amplification: removes the loss and adds noise
- F = Fourier transform
- D_L = diagonal matrix with fixed entries of unit amplitude (all-pass filter)
- $D_N =$ diagonal matrix with unit amplitude entries; the (ℓ, ℓ) -entry phase shift is proportional to the magnitude-squared of the ℓ^{th} entry of $\underline{E}_N(z_{k+1})$

4) Lower Bounds on Spectral Efficiency

- No analytic lower bounds exist for "full" models. All lower bounds are based on simulations or approximate models
- What quantity should we study?
 - 1) <u>Capacity</u> Problem: ∞ bandwidth so ∞ capacity!?
 - 2) <u>Spectral Efficiency</u>, i.e., capacity per Hertz
 Critique: why is Fourier bandwidth* (Hz) a good currency?
 Shouldn't we use Shannon bandwidth* (# dimensions)?
 - 3) <u>Capacity of realistic fiber</u>
 i.e., use realistic loss/dispersion/nonlinearity vs. frequency
 Problem: seems very difficult to analyze
- We study **spectral efficiency for ideal Raman amplification**, but the capacity with realistic loss functions is ultimately most interesting

Fiber Network Model

- Of course, capacity depends strongly on the model under study
- Optically-routed fiber-optic network model:

- WDM signals interfere due to fiber nonlinearities
- Signals co-propagate in a network environment

Figure courtesy of R.-J. Essiambre

Computed Lower Bounds

12 **Notes** Simulations Analytical - curves for a WDM 500 km network with filters 10 1000 km and per-channel 2000 km Spectral efficiency (bits/s/Hz) receivers 4000 km 8 - η may decrease 8000 km with launch power Shannon - low SNR: channel 6 is almost linear - new lower bounds by several groups (2013-) 2 0 10 30 20 25 35 40 0 5 15 45 SNR (dB)

R.-J. Essiambre, et al., "Capacity limits of optical fiber networks," IEEE/OSA J. Lightwave Technology, Feb. 2010.

But First More IT Preliminaries

• Consider a complex column vector $\underline{X} = \underline{X}_c + j \underline{X}_s$ with covariance and pseudo-covariance matrices

$$\mathbf{Q}_{\underline{X}} = E\left[\left(\underline{X} - E[\underline{X}]\right)\left(\underline{X} - E[\underline{X}]\right)^{\dagger}\right]$$
$$\tilde{\mathbf{Q}}_{\underline{X}} = E\left[\left(\underline{X} - E[\underline{X}]\right)\left(\underline{X} - E[\underline{X}]\right)^{\tau}\right]$$

- For interest: X is called proper if its pseudo-covariance matrix is **0**
- Example: Consider a complex, zero-mean, scalar X = X_c + j X_s.
 X is proper if E[X_c²]=E[X_s²] and E[X_cX_s]=0.
 Note: circularly symmetric X are proper, but proper X are not necessarily circularly symmetric (e.g. QAM signal sets)

Maximum Entropy

 Maximum Entropy: consider the correlation matrix R_X=E[X X[†]] where X has L entries. Then

$$h(\underline{X}) \leq \log[(\pi e)^L \det \mathbf{R}_{\underline{X}}]$$

with equality if and only if \underline{X} is Gaussian and proper (or circularly symmetric)

• For a complex square matrix **M** we have

$$h(\mathbf{M} \underline{X}) = h(\underline{X}) + 2\log|\det(\mathbf{M})|$$

In particular, if **M** is unitary then $h(\mathbf{M} \underline{X}) = h(\underline{X})$

Entropy Power Inequality

• Entropy Power:

$$V(\underline{X}) = e^{h(\underline{X})/L} / (\pi e)$$

• Entropy Power Inequality: for independent <u>X</u> and <u>Y</u> we have

$$V(\underline{X} + \underline{Y}) \ge V(\underline{X}) + V(\underline{Y})$$

• Conditional version: for conditionally independent <u>X</u> and <u>Y</u> we have

$$V\left(\underline{X}|\underline{U}\right) = e^{h(\underline{X}|\underline{U})/L} / (\pi e)$$
$$V\left(\underline{X} + \underline{Y}|\underline{U}\right) \ge V\left(\underline{X}|\underline{U}\right) + V\left(\underline{Y}|\underline{U}\right)$$

Energy and Entropy Conservation

Main Observations

- The linear step conserves energy and entropy
- The non-linear step also conserves energy and entropy (the key result)

$$h\left(|a|e^{j \operatorname{arg}(a) + jf(|a|)}\right) = h\left(|a|, \operatorname{arg}(a) + f(|a|)\right) + \mathbb{E}\left[\log|a|\right]$$
$$= \underbrace{h\left(|a|\right) + h\left(\operatorname{arg}(a) + f(|a|) \mid |a|\right)}_{h\left(|a|, \operatorname{arg}(a)\right)} + \mathbb{E}\left[\log|a|\right] = h(a)$$

Energy Recursion

• Energy after K steps: Energy_{Launch} + KN . We thus have:

$$\begin{split} & h(\underline{E}(z_{\kappa})) \leq \log \Big[(\pi e)^{L} \det \big(\mathbf{R}(\underline{E}(z_{\kappa})) \big) \Big] \ \dots \ \text{maximum entropy} \\ & \leq \sum_{i=1}^{L} \log \Big[\pi e \, R_{i,i} \big(\underline{E}(z_{\kappa}) \big) \Big] \ \dots \ \text{Hadamard's inequality} \\ & \leq L \cdot \log \big[\pi e \big(Energy_{\text{Launch}} + KN \big) / L \big] \ \dots \ \text{Jensen's inequality} \end{split}$$

Entropy Recursion

• Entropy recursion:

$$V(\underline{E}(z_{k+1})|\underline{E}(z_0)) \ge V(\underline{E}(z_k)|\underline{E}(z_0)) + N/L$$

• We thus have:

$$V(\underline{E}(z_{\kappa})|\underline{E}(z_{0})) \ge KN/L$$

or $h(\underline{E}(z_{\kappa})|\underline{E}(z_{0})) \ge L\log(\pi e KN/L)$

So for every step we have:

- Signal energy grows by the noise variance: can upper bound h($\underline{E}(z_K)$)
- Entropy power grows by at least the noise variance: can lower bound h($\underline{E}(z_K) | \underline{E}(z_0)$)
- Result*:

$$\begin{split} &I(\underline{E}(z_0);\underline{E}(z_{\kappa})) = h(\underline{E}(z_{\kappa})) - h(\underline{E}(z_{\kappa})|\underline{E}(z_0)) \\ &\leq L \cdot \log(1 + SNR) \end{split}$$

$$\Rightarrow \frac{1}{L} I(\underline{E}(z_0); \underline{E}(z_{\kappa})) \leq \log(1 + SNR)$$

- Let $B = 1/\Delta t$ be the "bandwidth" of the simulation
- So L = T/ Δt = TB is the time-bandwidth product
- The spectral efficiency is thus bounded by

 $\eta \leq \log(1 + SNR)$ [bits/sec/Hz]

6) Discussion

$\eta \leq \log(1 + SNR)$ [bits/sec/Hz]

Q1: Why normalize by the <u>simulation</u> bandwidth B? The "real" bandwidth W can be smaller.

A1: B can be chosen (this is even desirable) as the smallest bandwidth for which simulations give accurate results

Q2: What about capacity?

A2: Any real fiber has a maximal bandwidth B_{max} . A capacity upper bound follows by multiplying B_{max} by log(1+SNR)

Discussion (continued)

 $\eta \leq \log(1 + SNR)$ [bits/sec/Hz]

Q3: What about MIMO fiber?

A3: If energy and entropy are preserved by the linear and non-linear steps, and the noise is AWGN then the bound remains valid per mode

Q4: What about frequency-dependent (or mode-dependent) loss? A4: Open research!

7) Conclusions

- Spectral efficiency of (an idealized model of) SMF with linear polarization is ≤ log(1+SNR)
- 2) Many extensions are possible:
 - lumped amplification, 3rd-order dispersion, delayed Kerr effect
 - uniform loss, linear filters (for capacity results)
 - MIMO fiber (MMF or MCF)
- 3) More difficult:
 - better bounds and understanding at high SNR
 - frequency-dependent loss, dispersion, non-linearity
- 4) Multi-user information theory for fiber should be developed