The road ahead for wireless technology: Dreams and Challenges

Andrea Goldsmith

Wireless Systems Laboratory Stanford University

Pontifical Catholic University Rio de Janiero Oct. 13, 2011

Future Wireless Networks

Ubiquitous Communication Among People and Devices

Next-generation Cellular Wireless Internet Access Wireless Multimedia Sensor Networks Smart Homes/Spaces Automated Highways Smart Grid Body-Area Networks All this and more ...

Consumer Electronics Domain

Future Cell Phones

Burden for this performance is on the backbone network

Much better performance and reliability than today - Gbps rates, low latency, 99% coverage indoors and out

Future Wifi: Performance burden also on the (mesh) network

Device Challenges

- Size and Cost
- Power and Heat
- Multiband Antennas
- Multiradio Coexistance
- Integration

Software-Defined (SD) Radio: *Is this the solution to the device challenges?*

Wideband antennas and A/Ds span BW of desired signals

DSP programmed to process desired signal: no specialized HW

Today, this is not cost, size, or power efficient

Compressed sensing may be a solution for sparse signals

Compressed Sensing

 Basic premise is that signals with some sparse structure can be sampled below their Nyquist rate

- Signal can be perfectly reconstructed from these samples by exploiting signal sparsity
- This significantly reduces the burden on the front-end A/D converter, as well as the DSP and storage
- Might be key enabler for SD and low-energy radios
 - Only for incoming signals "sparse" in time, freq., space, etc.

Scarce Wireless Spectrum

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

UNITED

RADIO SERVICES COLOR LEGEND						
		AERONAUTER, MOBLE		MIER-GAVELUTE		PADIO ASTRONOMY
		AERONAUTEA. Morte satelute		LAND HOBILE		PADRODETERMINATION SAVELLITE
		AERONALITEAL FACEDRA/INATION		LAND HOBILE SATELLITE		PADROLOGATION
		AMATEUR		WATHENDELE		PADROLOCATION SATE
		AMATEUR SATELLITE		WARTHE MOBILE SATELLITE		PADIONAVIGATION
		BROADCASTING		MARTINE PACKNAWBATKH		PADIONAVIGATION SATELLITE
		BRDADCASTING SATELLITE		METEOROLOGICAL ADG		SPACE OPERATION
		EARTH EXPLORATION SATELLITE		METEOROLOGICAL SATELLITE		SPACE REVEATCH
		FIRED		MOBLE		STANDARD FREQUENC AND TIME SIGNAL
		FDED SATELLITE		MOBILE SAVELUTE		STANDARD FREQUENC AND THE STORAL SKIT
ACTIVITY CODE						
	GOVERNMENT EXCLUSIVE			COVERIMENT NON-COVERIMENT SNAFED		

ALLOCATION USAGE DESIGNATION

MARITIME MORE MARITIME NOT ALLOCATED MARITIME MARITIME MOBILE : : 8.9 6687

Hence regulated, and expensive

Spectral Reuse Due to its scarcity, spectrum is *reused*

In licensed bands

and unlicensed bands

Cellular, Wimax

Wifi, BT, UWB,...

Reuse introduces interference

Interference: *Friend or Foe?*

If treated as noise: Foe

$$SNR = \frac{P}{N + I}$$

Increases BER, reduces capacity

 If decodable: Neither friend nor foe *Multiuser detection can completely remove interference*

Why Not Ubiquitous Today? Power and A/D Precision

Reduced-Dimension MUD

- Exploits that number of active users G is random and much smaller than total users (ala compressed sensing)
- Using compressed sensing ideas, can correlate with M~log(G) waveforms
- Reduced complexity, size, and power consumption

10% Performance Degradation

Interference: *Friend or Foe?*

If exploited via cooperation and cognition

Friend

Especially in a network setting

Rethinking "Cells" in Cellular

How should cellular systems be designed?

Will gains in practice be big or incremental; in capacity or coverage?

- Traditional cellular design "interference-limited"
 - MIMO/multiuser detection can remove interference
 - Cooperating BSs form a MIMO array: what is a cell?
 - Relays change cell shape and boundaries
 - Distributed antennas move BS towards cell boundary
 - Femtocells create a cell within a cell
 - Mobile cooperation via relaying, virtual MIMO, analog network coding.

Gains from Distributed Antennas

10x power efficiency gain with 3 distributed antennas

DAS

- 3-4x gain in area spectral efficiency
 - Small cells yield another 3-4x gain

Cooperation in Ad-Hoc Networks

- Similar to mobile cooperation in cellular:
 - Virtual MIMO , generalized relaying, interference forwarding, and one-shot/iterative conferencing
- Many theoretical and practice issues:
 - Overhead, half-duplex, grouping, dynamics, synch, ...

Generalized Relaying

• Can forward message and/or interference

- Relay can forward all or part of the messages
 - Much room for innovation
- Relay can forward interference
 - To help subtract it out

Beneficial to forward both interference and message

In fact, it can achieve capacity

For large powers P_s, P₁, P₂, analog network coding approaches capacity

Intelligence beyond Cooperation: Cognition

- Cognitive radios can support new wireless users in existing crowded spectrum
 - <u>Without degrading performance of existing users</u>
- Utilize advanced communication and signal processing techniques
 - Coupled with novel spectrum allocation policies
- Technology could
 - Revolutionize the way spectrum is allocated worldwide
 - Provide sufficient bandwidth to support higher quality and higher data rate products and services

Cognitive Radio Paradigms

Underlay

 Cognitive radios constrained to cause minimal interference to noncognitive radios

Interweave

 Cognitive radios find and exploit spectral holes to avoid interfering with noncognitive radios

Overlay

 Cognitive radios overhear and enhance noncognitive radio transmissions

Underlay Systems

- Cognitive radios determine the interference their transmission causes to noncognitive nodes
 - Transmit if interference below a given threshold

- The interference constraint may be met
 - Via wideband signalling to maintain interference below the noise floor (spread spectrum or UWB)
 - Via multiple antennas and beamforming

Interweave Systems

- Measurements indicate that even crowded spectrum is not used across all time, space, and frequencies
 - Original motivation for "cognitive" radios (Mitola'00)

These holes can be used for communication

- Interweave CRs periodically monitor spectrum for holes
- Hole location must be agreed upon between TX and RX
- Hole is then used for opportunistic communication

Compressed sensing reduces A/D and processing requirements

Overlay Cognitive Systems

- Cognitive user has knowledge of other user's message and/or encoding strategy
 - Can help noncognitive transmission
 - Can presubtract noncognitive interference

Performance Gains from Cognitive Encoding

Achievable rate region and outer bound

Cellular Systems with Cognitive Relays

Cognitive Relay 2

Enhance robustness and capacity via cognitive relays

- Cognitive relays overhear the source messages
- Cognitive relays then cooperate with the transmitter in the transmission of the source messages
- Can relay the message even if transmitter fails due to congestion, etc.
 Can extend these ideas to MIMO systems

Wireless Sensor Networks

- Energy (transmit and processing) is the driving constraint
- Data flows to centralized location (joint compression)
- Low per-node rates but tens to thousands of nodes
- Intelligence is in the network rather than in the devices

Cross-Layer Tradeoffs under Energy Constraints

• Hardware

- All nodes have transmit, sleep, and transient modes
- Each node can only send a <u>finite</u> number of bits

• Link

- High-level modulation costs transmit energy but saves circuit energy (shorter transmission time)
- Coding costs circuit energy but saves transmit energy

• Access

- Power control impacts connectivity and interference
- Adaptive modulation adds another degree of freedom

• Routing:

• Circuit energy costs can preclude multihop routing

Total Energy (MQAM)

Green" Cellular Networks

How should cellular systems be redesigned for minimum energy?

Research indicates that signicant savings is possible

Minimize energy at both the mobile <u>and</u> base station via

- New Infrastuctures: cell size, BS placement, DAS, Picos, relays
- New Protocols: Cell Zooming, Coop MIMO, RRM, Scheduling, Sleeping, Relaying
- Low-Power (Green) Radios: Radio Architectures, Modulation, coding, MIMO

Antenna Placement in DAS

- Optimize distributed BS antenna location
- Primal/dual optimization framework
- Convex; standard solutions apply
- For 4+ ports, one moves to the center
- Up to 23 dB power gain in downlink
 Gain higher when CSIT not available

Distributed Control over Wireless

Interdisciplinary design approach

- Control requires fast, accurate, and reliable feedback.
- Wireless networks introduce delay and loss
- Need reliable networks and robust controllers
- Mostly open problems: Many design challenges

Wireless and Health, Biomedicine and Neuroscience

Doctor-on-a-chip

Telemedicine

-Cell phone info repository -Monitoring, remote intervention and services

Specialist Network

The brain as a wireless network

- EKG signal reception/modeling
- Signal encoding and decoding
- Nerve network (re)configuration

EHR

Summary

- The next wave in wireless technology is upon us
- This technology will enable new applications that will change people's lives worldwide
- Design innovation will be needed to meet the requirements of these next-generation systems
- A systems view and interdisciplinary design approach holds the key to these innovations