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Three Topics in Smart Grid: 

-  Game Theoretic Methods for Modeling Interactions 

-  Privacy-Utility Tradeoffs for Data Sources 

-  Distributed Algorithms for State Estimation 
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•  Salient characteristics of smart grid: 

–  Heterogeneity:  in terms of node types (electric vehicles, smart meters, substations, 
etc.) with each node having its own objective. 

–  Large-scale interactions: spans large geographical areas and could incorporate 
thousands if not millions of nodes. 

–  Stochastic dynamics: time-varying features, in terms of demand, supply, node 
dynamics (e.g., car mobility), etc.  
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•  Salient characteristics of smart grid: 

–  Heterogeneity:  in terms of node types (electric vehicles, smart meters, substations, 
etc.) with each node having its own objective. 

–  Large-scale interactions: spans large geographical areas and could incorporate 
thousands if not millions of nodes. 

–  Stochastic dynamics: time-varying features, in terms of demand, supply, node 
dynamics (e.g., car mobility), etc. 

•  Need techniques that capture individual node objectives, large-scale 
interactions, and dynamics/uncertainty 

•  Useful framework - game theory in its two branches: 

–  Non-cooperative game theory 

–  Cooperative game theory 

•  Illustrate via two examples 
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•  Groups of plug-in electric 
vehicles can trade energy 
with the main grid. 

•  Non-cooperative games can 
model interactions among 
such groups. 

•  If the grid acts as a single 
en t i t y, a S t a cke l be rg 
( leader-fol lower) game 
provides a good model. 

•  I f g r i d e l e m e n t s a c t 
autonomously, a hybrid 
auction/Nash game can be 
used.  Consider this first, 
with the EV groups selling … 
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•  Double auction: 

–  Order buyers by decreasing bids  

    and sellers by increasing prices  

–  Generate supply-demand curve 
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•  Double auction: 

–  Order buyers by decreasing bids  

    and sellers by increasing prices  

–  Generate supply-demand curve 

–  Intersection: the aggregate demand  
and supply curve intersect at a point  
which determines: 

•  The  number and identity of the sellers and buyers that will trade; 
assume L-1 sellers and M-1 buyers trade 

•  The trading price is given by  

 

 

 

a is the vector of energy put up for sale,  
sL and bM are the reservation bids of 
seller L and buyer M 

Buyer M 

Seller L 

Double Auction Market Model	

[w/ Saad, Han, Basar – T-SG (submitted)] 
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n  The strategy of a vehicle group i is to choose the maximum amount ai 

of energy to sell. 
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n  The strategy of a vehicle group i is to choose the maximum amount ai 

of energy to sell. 

n  Vehicle group i chooses its strategy to maximize its utility: 

 

 

n  How to solve the game and find the Nash equilibrium? 

n  Auction introduces a discontinuity => difficult analytically 

n  Algorithmic approach (based on best-response) 

Pricing factor Quantity sold  
(auction outcome) 

Trading price 
(auction outcome) 

A Non-Cooperative Game	

[w/ Saad, Han, Basar – T-SG (submitted)] 
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•  Init ia l ly, the ut i l i ty 
i n c reases a s more 
players enter the game 
leading to more energy 
sold. 

•  T h e n , t h e u t i l i t y 
d e c r e a s e s a s t h e 
presence of more sellers 
deflates the price. 

Typical Simulation Results	


Game Theoretic Methods for Modeling Interactions 



n  Consider now the grid acting as a single entity (and selling to the 
vehicle groups). 

n  Then we have a powerful leader (the grid) and less powerful (and 

competing) followers (the vehicle groups) - a Stackelberg game 

n  The utilities of the vehicle groups are still linear-quadratic in their 

strategies (i.e., how much they buy). 

n  But, the price is set by the leader.   

n  The leader’s utility is bi-linear = price ✕ total quantity sold. 

n  Leads to a Stackelberg equilibrium.  

A Stackelberg Model 	

[w/ Tushar, Saad, Smith - T-SG’12] 
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Typical Simulation Results	


*PSO = particle swarm optimization 
  ED = equal distributions   

Price vs. # Groups Ave. Utility vs. # Groups* 
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within the 
distribution network 
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–  In a set of players N, a coalition S is a group of cooperating players  

–  Value (utility) of a coalition v(S)  

–  User payoff ϕi (S): the portion received by a player i in a coalition S 

•  Coalition formation 

–  Coalitions can be compared based on Pareto ordering of user payoffs 

–  Merges and splits can be used to iterate on coalitions 

–  Convergence to a stable, merge-and-split-proof limit 
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•  For a coalition S, we define the value function as  

–  The max is over all orderings of buyers & u measures power losses. 

–  The utility represents a cost paid per unit of power loss. 

Game Formulation: Value Function	


Game Theoretic Methods for Modeling Interactions 



•  For a coalition S, we define the value function as  

–  The max is over all orderings of buyers & u measures power losses. 

–  The utility represents a cost paid per unit of power loss. 

•  To divide the utility between the players, adopt a fair division 
proportional to the non-cooperative utility of each user: 

Weight chosen 
according to  
micro-grid i’s non-
cooperative utility 

Game Formulation: Value Function	


Game Theoretic Methods for Modeling Interactions 



-  Emergence 
of local 
markets 

 
-  Here, we see 

a single 
snapshot; 
it is of 
interest 
for future 
work 
to see how 
this 
evolves as 
demand/
supply vary 

Typical Simulation Results (1)	
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•  Game theory for smart grid modeling: 

–  Demand-side management, energy trading and markets 

–  Integration and distributed operation of micro-grids 

–  “Game theoretic methods for the smart grid,” [w/ Saad, Han, Basar - SPM’12] 
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•  Game theory for smart grid modeling: 

–  Demand-side management, energy trading and markets 

–  Integration and distributed operation of micro-grids 

–  “Game theoretic methods for the smart grid,” [w/ Saad, Han, Basar - SPM’12] 

•  Other problems of interest  

–  Network formation games for PLC backhaul [w/ Saad, Han -  Gamenets’11] 

–  Social optimality of equilibria in trading markets [w/ Tushar, et al. – ICC’13]  

•  Additional issues 

–  Optimizing jointly over three layers: economic, cyber, and physical 

–  Incorporating dynamics (generation/load/mobility/etc.) 

Summary	
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•  There are many electronic information sources of information about us. 

–  Google, Facebook, smart metering, etc. 

 

 

•  The utility of these sources depends on their accessibility. 

•  But, they can also leak private information. 

•  How can we characterize this fundamental tradeoff? 
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A database is a table – rows: individual entries (total of n);  
                                  columns: attributes for each individual (total of K) 

Attributes 

Gender Visit Date Medication Diagnosis … Entries 
Query 

Response 
User 

1 

2 

n 

Numeric and non-numeric data 

Database Model 

 . . . 
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•  Database with n rows is a sequence of n i.i.d. observations of a vector 
random variable X = (X1 X2 … XK) with a joint distribution: 

 

 

Database: Source Model 

Privacy-Utility Tradeoffs for Data Sources 

  pX (x) = pX1X2…XK
(x1,x2 ,…,xK )



•  Database with n rows is a sequence of n i.i.d. observations of a vector 
random variable X = (X1 X2 … XK) with a joint distribution: 

 

•  Attributes divided into public (revealed) and private (hidden) variables, 
typically not disjoint: 
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Privacy-Utility Tradeoffs for Data Sources 

  pX (x) = pX1X2…XK
(x1,x2 ,…,xK )

 
kth  entry :Xk = Xr ,k ,Xh,k( )

 
Xr ,k :  revealed

 
Xh,k :  hidden
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–  In the privacy problem, we have a single “receiver” (the query initiator) with 
the source being divided into private and public variables. 

 
•  How can we characterize the tradeoff between utility and privacy 

in such a setting? 

–  Measure utility by distortion of the public variables as revealed to a user of the 
database; and  

–  Measure privacy by equivocation on the private variables in information 
revealed to a user. 

•  Then the distortion-equivocation region describes the tradeoff. 
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Distortion �

Equivocation �

( , )� � �

Feasible Distortion-Equivocation 
region .��� �

Privacy �

Utility �
Distortion �

Privacy-indifferent
Region

Privacy-exclusive
Region (current art)

Our Approach:
Utility-Privacy 
Tradeoff Region

Equivocation �

(a): Rate-Distortion-Equivocation Region (b): Utility-Privacy Tradeoff Region

For a database with utility and privacy constraints, � =����. [SRP, ISIT ‘10]

L. Sankar, S. Raj Rajagopalan, H. V. Poor, “A theory of privacy and utility in databases,” 
submitted to the IEEE Trans. Inform. Theory, Feb. 2011.
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–  need to share measurements on state estimation for reliability (utility)  
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Wyner-Ziv coding maximizes privacy for a desired utility at each RTO. 
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Smart Meter Privacy 

•  Smart meter data is useful for price-aware usage, load balancing 

•  But, it leaks information about in-home activity 

Privacy-Utility Tradeoffs for Data Sources 



P-U tradeoff leads to a spectral ‘reverse water-filling’ solution 

Smart Meter Privacy 

Privacy-Utility Tradeoffs for Data Sources 
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P-U tradeoff leads to a spectral ‘reverse water-filling’ solution 

The following theorem captures our main result.

Theorem 3: The utility-privacy tradeoff for smart meter
measurements modeled as a Gaussian source with memory is
given by the leakage function λ(D) which results from choos-
ing the distribution p (x̂n|xn) as the rate-distortion (without
privacy) optimal distribution.

Proof: The proof follows directly from noting that, for a
given jointly Gaussian distribution of the source and correlated
hidden sequence, pXnY n , the infimum in (8) and (9) is strictly
over the space of conditional distributions of the revealed
sequence given the original source sequence as a result of
the Markov chain relationship Y n − Xn − X̂n. Expanding
the leakage as I(Y n; X̂n) = h(Y n) − h(Y n|X̂n), and using
the fact for correlated Gaussian processes, Yk = αkXk + Zk,
for all k, where {Zk} is a sequence independent of {Xk}
and αk is a constant for each k, one can show that the jointly
Gaussian distribution of Xn and X̂n which minimizes (8) also
minimizes (9).

Remark 2: Theorem 3 simplifies the development of the
RDL region for Gaussian sources with memory for which the
rate-distortion function is known. For Gaussian sources with
memory the rate-distortion function is known and lends itself
to a straightforward practical implementation that we discuss
in the following section.

F. Rate-Distortion for Gaussian Sources with Memory

In general, the rate distortion functions for sources with
memory are not straightforward to compute. However, for
Gaussian sources, the rate-distortion function R(D) (without
the additional privacy constraint) is known and can be obtained
via a transformation of the correlated source sequence Xn

to its eigen-space in which the resulting sequence X̃n is
uncorrelated (and hence, independent for jointly Gaussian
sources); let SX(ω), SY (ω), and SXY (ω) denote the two-
sided power spectral densities (PSDs) of the {Xk} , {Yk},
and {XkYk} processes, respectively [16]. Let φ denote the
Lagrangian parameter for the distortion constraint (4) in the
rate minimization problem. Explicitly denoting the dependence
on the water-level φ, the rate-distortion function Rφ (D) and
the average distortion function D (φ) are given by

Rφ (D) =

∫ π

−π

max

(

0,
1

2
log

SX(ω)

φ

)

dω

2π
(10)

D (φ) =

∫ π

−π

min (SX(ω),φ)
dω

2π
. (11)

Note that the water-level φ is determined by the desired
average distortion D (φ) = D. Thus, R(D) for a Gaussian
source with memory can be expressed as an infinite sum of the
rate-distortion functions for independent Gaussian variables,
one for each angular frequency ω ∈ [−π,π]. The “water-
level” φ captures the average time-domain distortion constraint
across the spectrum such that the distortion for any ω is the
minimum of the water-level and the PSD. The privacy leakage
λ(D (φ)) is then the infinite sum of the information leakage
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Fig. 1. The PSD of {Xk}. The area below the curve and the horizontal line
is equal to D.

about {Yk} for each ω, and is given by

λ (D (φ)) =

∫ π

−π

1

2
log

(

SY (ω)

SXY (ω)g (ω) + SY (ω)

)

dω

2π
(12)

where g (ω) ≡ (min (SX(ω),φ) − 1) .
Remark 3: The transform domain “water-filling” solution

suggests that in practice the time-series data can be filtered
for a desired level of fidelity (distortion) and privacy (leak-
age) using Fourier transforms. The privacy-preserving rate-
distortion optimal scheme thus reveals only those frequency
components with power above the water-level φ. Furthermore,
at every frequency only the portion of the signal energy which
is above the water level φ is preserved by the minimum-rate
sequence from which the source can be generated with an
average distortion D.

IV. ILLUSTRATION

The following example illustrates our results. We assume
that the private information to be hidden is the measurement
sequence itself, i.e., Yk = Xk, for all k. For the meter
measurements modeled as a stationary Gaussian time series
{Xk} , we choose Xk ∼ N (0, 1) for all k ∈ I, and an
autocorrelation function

cm = E[XkXk+m] =















1 m = 0,
0.3 m = ±1,
0.4 m = ±2,
0 otherwise.

The power spectral density PSD (frequency domain represen-
tation of the autocorrelation function) of this process is given
by

S(ω) =
∞
∑

m=−∞

cm exp(imω) = 1+0.6 cos(ω)+0.8 cos(2ω),

− π ≤ ω ≤ π. (13)

In order to obtain the rate-distortion function Rφ(D) for this
source, for a given D we have to find the water-level φ
satisfying (11).

Smart Meter Privacy 
[w /Sankar, Rajagapolan, Mohajer -  T-SG’13] 

Privacy-Utility Tradeoffs for Data Sources 



P-U tradeoff leads to a spectral ‘reverse water-filling’ solution 

The following theorem captures our main result.

Theorem 3: The utility-privacy tradeoff for smart meter
measurements modeled as a Gaussian source with memory is
given by the leakage function λ(D) which results from choos-
ing the distribution p (x̂n|xn) as the rate-distortion (without
privacy) optimal distribution.

Proof: The proof follows directly from noting that, for a
given jointly Gaussian distribution of the source and correlated
hidden sequence, pXnY n , the infimum in (8) and (9) is strictly
over the space of conditional distributions of the revealed
sequence given the original source sequence as a result of
the Markov chain relationship Y n − Xn − X̂n. Expanding
the leakage as I(Y n; X̂n) = h(Y n) − h(Y n|X̂n), and using
the fact for correlated Gaussian processes, Yk = αkXk + Zk,
for all k, where {Zk} is a sequence independent of {Xk}
and αk is a constant for each k, one can show that the jointly
Gaussian distribution of Xn and X̂n which minimizes (8) also
minimizes (9).

Remark 2: Theorem 3 simplifies the development of the
RDL region for Gaussian sources with memory for which the
rate-distortion function is known. For Gaussian sources with
memory the rate-distortion function is known and lends itself
to a straightforward practical implementation that we discuss
in the following section.

F. Rate-Distortion for Gaussian Sources with Memory

In general, the rate distortion functions for sources with
memory are not straightforward to compute. However, for
Gaussian sources, the rate-distortion function R(D) (without
the additional privacy constraint) is known and can be obtained
via a transformation of the correlated source sequence Xn

to its eigen-space in which the resulting sequence X̃n is
uncorrelated (and hence, independent for jointly Gaussian
sources); let SX(ω), SY (ω), and SXY (ω) denote the two-
sided power spectral densities (PSDs) of the {Xk} , {Yk},
and {XkYk} processes, respectively [16]. Let φ denote the
Lagrangian parameter for the distortion constraint (4) in the
rate minimization problem. Explicitly denoting the dependence
on the water-level φ, the rate-distortion function Rφ (D) and
the average distortion function D (φ) are given by

Rφ (D) =

∫ π

−π

max

(

0,
1

2
log

SX(ω)

φ

)

dω

2π
(10)

D (φ) =

∫ π

−π

min (SX(ω),φ)
dω

2π
. (11)

Note that the water-level φ is determined by the desired
average distortion D (φ) = D. Thus, R(D) for a Gaussian
source with memory can be expressed as an infinite sum of the
rate-distortion functions for independent Gaussian variables,
one for each angular frequency ω ∈ [−π,π]. The “water-
level” φ captures the average time-domain distortion constraint
across the spectrum such that the distortion for any ω is the
minimum of the water-level and the PSD. The privacy leakage
λ(D (φ)) is then the infinite sum of the information leakage
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about {Yk} for each ω, and is given by

λ (D (φ)) =

∫ π

−π

1

2
log

(

SY (ω)

SXY (ω)g (ω) + SY (ω)

)

dω

2π
(12)

where g (ω) ≡ (min (SX(ω),φ) − 1) .
Remark 3: The transform domain “water-filling” solution

suggests that in practice the time-series data can be filtered
for a desired level of fidelity (distortion) and privacy (leak-
age) using Fourier transforms. The privacy-preserving rate-
distortion optimal scheme thus reveals only those frequency
components with power above the water-level φ. Furthermore,
at every frequency only the portion of the signal energy which
is above the water level φ is preserved by the minimum-rate
sequence from which the source can be generated with an
average distortion D.

IV. ILLUSTRATION

The following example illustrates our results. We assume
that the private information to be hidden is the measurement
sequence itself, i.e., Yk = Xk, for all k. For the meter
measurements modeled as a stationary Gaussian time series
{Xk} , we choose Xk ∼ N (0, 1) for all k ∈ I, and an
autocorrelation function

cm = E[XkXk+m] =















1 m = 0,
0.3 m = ±1,
0.4 m = ±2,
0 otherwise.

The power spectral density PSD (frequency domain represen-
tation of the autocorrelation function) of this process is given
by

S(ω) =
∞
∑

m=−∞

cm exp(imω) = 1+0.6 cos(ω)+0.8 cos(2ω),

− π ≤ ω ≤ π. (13)

In order to obtain the rate-distortion function Rφ(D) for this
source, for a given D we have to find the water-level φ
satisfying (11).

Smart Meter Privacy 

Can also use energy storage to aid privacy [w/ Tan, Gunduz, JSAC:SG Series’13] 

Privacy-Utility Tradeoffs for Data Sources 
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•  An information source is divided into private and public variables 

•  Leads to an equivocation-distortion characterization  

•  Adding rate: a rate-distortion problem with an equivocation constraint  

•  Applications in smart grid include: competitive privacy & smart metering 

•  Can also consider  

•  multiple queries (successive disclosure)  

•  multiple sources (side information) 

 

Summary 

Privacy-Utility Tradeoffs for Data Sources 



Distributed 
Algorithms for 

State Estimation 
 

Joint work with Le Xie, et al. 

Games, Privacy and Distributed Inference for the Smart Grid 



•  Computational & communications challenge:  

–  fast sensing (e.g., Phasor Measurement Units) produces big data, and communications 
bottlenecks 

•  Restructuring/deregulation means more RTOs, or control areas (CAs) 

•  Situational awareness needed for large interconnected power systems: 

–   wide area monitoring, control and protection (WAMCP) 

•  Of interest: a distributed estimation framework to obtain the system-
wide states through information exchange among CAs. 

Motivation 

Distributed Algorithms for State Estimation 



Wide area state estimation via distributed iterative information processing: 

Proposed Solution 

           Key Properties 
 
•  No central coordinator 

•  Only local information 
(measurement Jacobian matrix, 
measurement vector) required 

•  All local control areas not 
necessarily observable 

•  Flexible in communication 
topology 

•  Equivalent performance to 
centralized approach 

Conceptual Model 

Distributed Algorithms for State Estimation 



Distributed Measurement Model Distributed Measurement Model

• System State

– θ ∈ RM : The network system state (vector) consisting of voltage
phase angles of buses in all CAs.

• CA Local Observation Model

– zn ∈ RMn: The local observation at CA n

zn = Hnθ + en,

where the Jacobian Hn ∈ RMn sub-block represents the local physical
interconnections.
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Proposed Distributed Iterative Solution 
Proposed Distributed Iterative Solution

Each CA n has only local knowledge of the network structure and
measurements and updates a local estimate xn as follows:

xn(t+ 1) = xn(t)− βt

∑

l∈Ωn

(xn(t)− xl(t)) + αtH
T
n

(
zn −Hnxn(t)

)
,

where

• Ωn: communication neighborhood of CA n

• Hn = R−1/2
n Hn

• zn = R−1/2
n zn
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Distributed Algorithms for State Estimation 

[w / Xie, Choi, Kar -  T-SG’12] 



Global observability of the grid (i.e.,                is full rank) 

+ connectivity of the communication network (i.e. the second 
smallest eigenvalue of the graph Laplacian is positive) … 

assures a.s. convergence of local estimates to the global 
estimate (least squares with all measurements) with 
appropriately programmed α’s and β’s. 

Distributed State Estimator: Convergence

Assume

• (A.1): Global Observability - The matrix

G = HTH =
N∑

n=1

HT
nHn

is full rank.

• (A.2): Connectivity: The inter-CA communication network is
connected, i.e., λ2(L) > 0, where L denotes the communication network
Laplacian matrix.
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Convergence to Global Estimates 

Distributed Algorithms for State Estimation 

[w / Xie, Choi, Kar -  T-SG’12] 



Test Bus Systems 

•  Overall systems are globally observable 

•  CAs are globally unobservable 

•  Shaded CAs are locally unobservable 

Test Bus Systems
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Figure: Multi-area systems illustrating two different inter-control
communication networks.

! Shaded areas are locally unobservable.
! Two different inter-control communication networks.
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Convergence of Phase Estimates 
Convergence Test
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(b) The IEEE 118-bus system (AC)

Figure: Convergence of bus phase angle differences gj,k(i) between
distributed and centralized algorithms.

gj ,k(i) = θ(d)j ,k (i)− θ(c)j ,k

where θ(d)j ,k (i) = |θ(d)j (i)− θ(d)k (i)| and θ(c)j ,k = |θ(c)j − θ(c)k |
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14-Bus System 118-Bus System 
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Communication Topology Flexibility 

14-Bus System 

Communication Topology Flexibility Test
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Figure: Convergence test in the two difference communication schemes in
the IEEE 14-bus system
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•  Nonlinear (AC) state estimation [w/ Xie, Choi, Kar, T-SG’12] 

•  Multi-cast routing [w/ Li, Lai, JSAC:SG Series’12] 

•  Games for privacy-aware distributed state estimation [w/ 

Belmega, Sankar – NetGCoop’12 & T-SG (submitted)] 

Distributed Algorithms for State Estimation 

Related Work 



Summary	


Three Topics in Smart Grid: 

-  Game Theoretic Methods for Modeling Interactions 

-  Privacy-Utility Tradeoffs for Data Sources 

-  Distributed Algorithms for State Estimation 

Games, Privacy and Distributed Inference for the Smart Grid 



Thank You! 


