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Traditional Grid System	
 Smart Grid System	


!   Electromechanical system	

!   One-way communication	

!   Centralized generation	

!   Few sensors	

!   Manual monitoring	

!   Manual restoration	

!   Failures and blackouts	

!   Limited control	

!   Few customer choices	


!   Cyber-physical system	

!   Two-way communication	

!   Distributed generation	

!   Sensors throughout	

!   Self-monitoring	

!   Self-healing	

!   Adaptive and reliable	

!   Pervasive control	

!   Many customer choices	


What Is Smart Grid?	




!   Improve power reliability and quality.	


!   Enhance capacity and efficiency of existing power plant.	


!   Improve resilience to disruption.	


!   Enable self-healing response to system disturbances.	


!   Facilitate expanded deployment of renewable energy sources.	


!   Accommodate distributed power sources.	


!   Automate maintenance and operation.	


!   Reduce fossil fuel consumption and green house emission.	


!   Improve grid security.	


!   Enable transition to electric vehicles and new storage options.	


!   Increase consumers choice.	


!   Enable new products, services and markets.	


!   Optimize facility utilization.	


!   I.e., greater efficiency, security and reliability	


Source: National Institute of Standards and Technology. NIST framework and roadmap for smart grid interoperability 
standards, release 1.0, http://www.nist.gov/public affairs/releases/upload/smartgridinteroperability final.pdf. January 2010. 

What Have a Smart Grid?	




The introduction of a cyber layer invites the application of 

methodologies from the  information sciences:	


-  optimization, game theory & control	


-  communications, networking & information theory	


-  statistical inference & signal processing	


The Role of Information Sciences	




Game Theoretic 

Methods for Greater 

Efficiency	




•  Salient characteristics of smart grid:	


–  Heterogeneity:  many grid elements, each having its own objective	


–  Large-scale interactions: geographically and in terms of number of elements	


–  Stochastic dynamics: in terms of demand, supply, etc.	
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•  Salient characteristics of smart grid:	


–  Heterogeneity:  many grid elements, each having its own objective	


–  Large-scale interactions: geographically and in terms of number of elements	


–  Stochastic dynamics: in terms of demand, supply, etc.	


•  Useful framework - game theory in its two branches:	


–  Non-cooperative game theory	


–  Cooperative game theory	


•  Game theory for smart grid efficiency:	


–  Demand-side management, energy trading and markets	


–  Integration and distributed operation of micro-grids 	


	


	


	


Motivation	




•  Groups of plug-in electric 
vehicles (or other entities) 
can trade energy with the 
main grid.	


	


Ex. 1: Energy Trading for Plug-In Vehicles	




•  Groups of plug-in electric 
vehicles (or other entities) 
can trade energy with the 
main grid.	


•  Non-cooperative games can 
model interactions 	


-  among such groups (Nash) 
[w/ Wang, et al. - T-SG’14]	


-  between such groups and 
the grid (Stackelberg)       
[w/ Tushar, et al. - T-SG’14]	


Ex. 1: Energy Trading for Plug-In Vehicles	




!  The strategy of a vehicle group i is to choose the maximum 

amount ai of energy to sell. 	


	


	


	


A Nash Game: Selling to the Grid	




!  The strategy of a vehicle group i is to choose the maximum 

amount ai of energy to sell.	


!  Vehicle group i chooses its strategy to maximize its utility:	


	


	


	


Pricing factor Quantity sold  
(auction outcome) 

Trading price 
(auction outcome) 

A Nash Game: Selling to the Grid	




!  The strategy of a vehicle group i is to choose the maximum 

amount ai of energy to sell.	


!  Vehicle group i chooses its strategy to maximize its utility:	


	


	


!  How to solve the game and find the Nash equilibrium?	


!  Auction introduces a discontinuity => difficult analytically	


!  Algorithmic approach (based on best-response)	


Pricing factor Quantity sold  
(auction outcome) 

Trading price 
(auction outcome) 

A Nash Game: Selling to the Grid	




•  Initially, the utility increases 
as more players enter the 
game leading to more 
energy sold.	


•  Then, the utility decreases 
as the presence of more 
sellers deflates the price.	


Simulation Example: Selling to the Grid	

[w/ Wang, et al. – T-SG ‘14]	




!  Energy trading within the 
distribution network	


!  Cooperation helps to:	


!  Exchange energy: sell surplus 
and overcome deficiency	


!  Reduce power losses over 
transmission lines	


	


Ex. 2: Micro-grid Interaction	




!  Energy trading within the 
distribution network	


!  Cooperation helps to:	


!  Exchange energy: sell surplus 
and overcome deficiency	


!  Reduce power losses over 
transmission lines	


!  Coalitional games – 
models the process of 
elements’ forming 
cooperatives to trade 
energy	


	


Ex. 2: Micro-grid Interaction	




•  Coalitional game (N,v)	


–  In a set of players N, a coalition S is a group of cooperating players 	


–  Value (utility) of a coalition v(S) 	


–  User payoff ϕi (S): the portion received by a player i in a coalition S	


–  For illustration purposes, we can use a payoff in term of power losses	


	

	


Coalition Games	




•  Coalitional game (N,v)	


–  In a set of players N, a coalition S is a group of cooperating players 	


–  Value (utility) of a coalition v(S) 	


–  User payoff ϕi (S): the portion received by a player i in a coalition S	


–  For illustration purposes, we can use a payoff in term of power losses	


•  Coalition formation	


–  Coalitions can be compared based on Pareto ordering of user payoffs	


–  Merges and splits can be used to iterate on coalitions	


–  Convergence to a stable, merge-and-split-proof limit	


	


Coalition Games	




Typical Simulation Results	

[w/ Saad, et al. - SPM’12]	




•  Game theory for smart grid modeling:	


–  Demand-side management, energy trading and markets	


–  Integration and distributed operation of micro-grids	


–  “Game theoretic methods for the smart grid,” [w/ Saad, Han, Basar - SPM’12]	


Summary	
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•  Game theory for smart grid modeling:	


–  Demand-side management, energy trading and markets	


–  Integration and distributed operation of micro-grids	


–  “Game theoretic methods for the smart grid,” [w/ Saad, Han, Basar - SPM’12]	


•  Other problems of interest 	


–  Network formation games for PLC backhaul [w/ Saad, Han -  Gamenets’11]	


–  Trading markets with a single power provider [w/ Tushar, et al. – T-SG’12, T-SG’14] 	


•  Additional issues	


–  Optimizing jointly over three layers: economic, cyber, and physical	


–  Incorporating dynamics (generation/load/mobility/etc.)	


Summary	




Information Theoretic 

Methods for Greater 

Security	




•  The smart grid cyber layer will generate considerable electronic data:	


–  Power flow sensors, phasor measurement units, smart meters, etc.	
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•  The smart grid cyber layer will generate considerable electronic data:	


–  Power flow sensors, phasor measurement units, smart meters, etc.	


	


	


•  The utility of this data depend on its accessibility.	


•  But, it can also leak information that should be kept secure, or private.	


•  How can we characterize this fundamental tradeoff?	


Motivation: Data Security	




	


•  Data consists a sequence of vectors of attributes (i.e., a database), 
a which can be divided into public (revealed) and private (hidden) 
variables.	


	


	

	


Privacy-Utility Tradeoff	




	


•  Data consists a sequence of vectors of attributes (i.e., a database), 
a which can be divided into public (revealed) and private (hidden) 
variables.	


•  To characterize the tradeoff between utility and privacy we can	


–  Measure utility by distortion of the public variables as revealed to a user; and 	


–  Measure privacy by leakage of information about the private variables in 
information revealed.	


	


	

	


Privacy-Utility Tradeoff	




	


•  Data consists a sequence of vectors of attributes (i.e., a database), 
a which can be divided into public (revealed) and private (hidden) 
variables.	


•  To characterize the tradeoff between utility and privacy we can	


–  Measure utility by distortion of the public variables as revealed to a user; and 	


–  Measure privacy by leakage of information about the private variables in 
information revealed.	


•  Problems in this framework can be solved via information theoretic 
analysis for many cases. [w/ Sankar, Rajagopolan - T-IFS’13]	


	

	


Privacy-Utility Tradeoff	




•   Encoder maps the original data to a “sanitized” database (SDB): 	


   Encoder :Xn →W = SDB1,SDB2 ,…,SDBM{ }

Distortion-Equivocation Model	
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•   Encoder maps the original data to a “sanitized” database (SDB): 	


   Encoder :Xn →W = SDB1,SDB2 ,…,SDBM{ }
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 M ≤ 2n(R+ε )Add a rate constraint	


Distortion-Equivocation Model	




Utility-Privacy/RDE Regions
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Utility-Privacy/RDE Regions	




•  Smart meter data is useful for price-aware usage, load balancing	


•  But, it leaks information about in-home activity	


Ex. 1: Smart Meter Privacy	




P-U tradeoff leads to a spectral ‘reverse water-filling’ solution	


The following theorem captures our main result.

Theorem 3: The utility-privacy tradeoff for smart meter
measurements modeled as a Gaussian source with memory is
given by the leakage function λ(D) which results from choos-
ing the distribution p (x̂n|xn) as the rate-distortion (without
privacy) optimal distribution.

Proof: The proof follows directly from noting that, for a
given jointly Gaussian distribution of the source and correlated
hidden sequence, pXnY n , the infimum in (8) and (9) is strictly
over the space of conditional distributions of the revealed
sequence given the original source sequence as a result of
the Markov chain relationship Y n − Xn − X̂n. Expanding
the leakage as I(Y n; X̂n) = h(Y n) − h(Y n|X̂n), and using
the fact for correlated Gaussian processes, Yk = αkXk + Zk,
for all k, where {Zk} is a sequence independent of {Xk}
and αk is a constant for each k, one can show that the jointly
Gaussian distribution of Xn and X̂n which minimizes (8) also
minimizes (9).

Remark 2: Theorem 3 simplifies the development of the
RDL region for Gaussian sources with memory for which the
rate-distortion function is known. For Gaussian sources with
memory the rate-distortion function is known and lends itself
to a straightforward practical implementation that we discuss
in the following section.

F. Rate-Distortion for Gaussian Sources with Memory

In general, the rate distortion functions for sources with
memory are not straightforward to compute. However, for
Gaussian sources, the rate-distortion function R(D) (without
the additional privacy constraint) is known and can be obtained
via a transformation of the correlated source sequence Xn

to its eigen-space in which the resulting sequence X̃n is
uncorrelated (and hence, independent for jointly Gaussian
sources); let SX(ω), SY (ω), and SXY (ω) denote the two-
sided power spectral densities (PSDs) of the {Xk} , {Yk},
and {XkYk} processes, respectively [16]. Let φ denote the
Lagrangian parameter for the distortion constraint (4) in the
rate minimization problem. Explicitly denoting the dependence
on the water-level φ, the rate-distortion function Rφ (D) and
the average distortion function D (φ) are given by

Rφ (D) =

∫ π

−π

max

(

0,
1

2
log

SX(ω)

φ

)

dω

2π
(10)

D (φ) =

∫ π

−π

min (SX(ω),φ)
dω

2π
. (11)

Note that the water-level φ is determined by the desired
average distortion D (φ) = D. Thus, R(D) for a Gaussian
source with memory can be expressed as an infinite sum of the
rate-distortion functions for independent Gaussian variables,
one for each angular frequency ω ∈ [−π,π]. The “water-
level” φ captures the average time-domain distortion constraint
across the spectrum such that the distortion for any ω is the
minimum of the water-level and the PSD. The privacy leakage
λ(D (φ)) is then the infinite sum of the information leakage

0 0  
0

0.5

1

1.5

2

2.5

3

ω
π−π

S (ω)

φ

Fig. 1. The PSD of {Xk}. The area below the curve and the horizontal line
is equal to D.

about {Yk} for each ω, and is given by

λ (D (φ)) =

∫ π

−π

1

2
log

(

SY (ω)

SXY (ω)g (ω) + SY (ω)

)

dω

2π
(12)

where g (ω) ≡ (min (SX(ω),φ) − 1) .
Remark 3: The transform domain “water-filling” solution

suggests that in practice the time-series data can be filtered
for a desired level of fidelity (distortion) and privacy (leak-
age) using Fourier transforms. The privacy-preserving rate-
distortion optimal scheme thus reveals only those frequency
components with power above the water-level φ. Furthermore,
at every frequency only the portion of the signal energy which
is above the water level φ is preserved by the minimum-rate
sequence from which the source can be generated with an
average distortion D.

IV. ILLUSTRATION

The following example illustrates our results. We assume
that the private information to be hidden is the measurement
sequence itself, i.e., Yk = Xk, for all k. For the meter
measurements modeled as a stationary Gaussian time series
{Xk} , we choose Xk ∼ N (0, 1) for all k ∈ I, and an
autocorrelation function

cm = E[XkXk+m] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 m = 0,
0.3 m = ±1,
0.4 m = ±2,
0 otherwise.

The power spectral density PSD (frequency domain represen-
tation of the autocorrelation function) of this process is given
by

S(ω) =
∞
∑

m=−∞

cm exp(imω) = 1+0.6 cos(ω)+0.8 cos(2ω),

− π ≤ ω ≤ π. (13)

In order to obtain the rate-distortion function Rφ(D) for this
source, for a given D we have to find the water-level φ
satisfying (11).

Source Coding Solution	

[w/ Sankar, et al. - T-SG’13]	
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suggests that in practice the time-series data can be filtered
for a desired level of fidelity (distortion) and privacy (leak-
age) using Fourier transforms. The privacy-preserving rate-
distortion optimal scheme thus reveals only those frequency
components with power above the water-level φ. Furthermore,
at every frequency only the portion of the signal energy which
is above the water level φ is preserved by the minimum-rate
sequence from which the source can be generated with an
average distortion D.

IV. ILLUSTRATION

The following example illustrates our results. We assume
that the private information to be hidden is the measurement
sequence itself, i.e., Yk = Xk, for all k. For the meter
measurements modeled as a stationary Gaussian time series
{Xk} , we choose Xk ∼ N (0, 1) for all k ∈ I, and an
autocorrelation function

cm = E[XkXk+m] =

⎧
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⎪

⎨

⎪

⎪

⎩

1 m = 0,
0.3 m = ±1,
0.4 m = ±2,
0 otherwise.

The power spectral density PSD (frequency domain represen-
tation of the autocorrelation function) of this process is given
by

S(ω) =
∞
∑

m=−∞

cm exp(imω) = 1+0.6 cos(ω)+0.8 cos(2ω),

− π ≤ ω ≤ π. (13)

In order to obtain the rate-distortion function Rφ(D) for this
source, for a given D we have to find the water-level φ
satisfying (11).

Can also use energy storage to aid privacy [w/ Tan, Gunduz - JSAC:SG Series’13]	


Source Coding Solution	

[w/ Sankar, et al. - T-SG’13]	




•   Leads to a problem of competitive privacy	


Ex. 2: Competitive Privacy	


•  N.A. Grid: interconnected regional transmission organizations which	


–  need to share measurements on state estimation for reliability (utility) 	


–  wish to withhold information for economic competitive reasons (privacy)	


	




[w /Sankar, Belmega -  preprint]	


mth system state 

  
Yk = Hk ,mXm + Zk
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M
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•  Noisy measurements at RTO k:	
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Wyner-Ziv coding maximizes privacy for a desired utility at each RTO.	
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[w /Sankar, Belmega -  preprint]	


Wyner-Ziv coding maximizes privacy for a desired utility at each RTO.	


mth system state 

  
Yk = Hk ,mXm + Zk

m=1

M

∑ ,  k = 1,2,…,M

•  Noisy measurements at RTO k:	


	


•  Utility for RTO k: mean-square error for its own state Xk	


•  Privacy for RTO k: leakage of information about Xk to other RTOs 	


	


•  Game theory can explain the interactions.	


Competitive Privacy Model	




	

•  An information source is divided into private and public 

variables	


•  Leads to an in format ion- leakage/d is tort ion 

characterization of the privacy-utility tradeoff	


•  Applications in smart grid include: smart metering & 

competitive privacy	


	


Summary	
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•  Computational & communications challenge: 	


–  fast sensing produces big data, and communications bottlenecks	


Motivation	
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•  Computational & communications challenge: 	


–  fast sensing produces big data, and communications bottlenecks	


•  Control can be decentralized into control areas (CAs)	


•  Of interest: 	


–  distributed algorithms to obtain system-wide situational awareness 
through local information exchange among CAs.	


Motivation	




Wide area state (bus-phase) estimation via distributed processing:	


        Desired Properties	

	

•  No central coordinator	


•  Only local information required at 
CAs	


•  CAs not necessarily observable	


•  Flexible in communication topology	


•  Equivalent performance to centralized 
estimation	


Conceptual Model	


Ex.: Distributed Estimation	




Distributed Measurement Model

• System State

– θ ∈ RM : The network system state (vector) consisting of voltage
phase angles of buses in all CAs.

• CA Local Observation Model

– zn ∈ RMn: The local observation at CA n

zn = Hnθ + en,

where the Jacobian Hn ∈ RMn sub-block represents the local physical
interconnections.

7

Distributed Measurement Model	




•  Consider iterative estimates at each CA of the form:	


	


i.e., new estimate = previous estimate + consensus correction + residual-error correction	


[w / Xie, et al. -  T-SG’12]	

Distributed Estimation Algorithms	


Proposed Distributed Iterative Solution

Each CA n has only local knowledge of the network structure and
measurements and updates a local estimate xn as follows:

xn(t+ 1) = xn(t)− βt

∑

l∈Ωn

(xn(t)− xl(t)) + αtH
T
n

(
zn −Hnxn(t)

)
,

where

• Ωn: communication neighborhood of CA n

• Hn = R−1/2
n Hn

• zn = R−1/2
n zn
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•  Consider iterative estimates at each CA of the form:	


	


i.e., new estimate = previous estimate + consensus correction + residual-error correction	


•  For properly chosen parameters:	


global observability of the grid + connectivity of the network implies convergence of the 

local estimates to global least squares 	


[w / Xie, et al. -  T-SG’12]	
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measurements and updates a local estimate xn as follows:
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•  Overall systems are globally observable	


•  CAs are globally unobservable	


•  Shaded CAs are locally unobservable	


Test Bus Systems
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Figure: Multi-area systems illustrating two different inter-control
communication networks.

! Shaded areas are locally unobservable.
! Two different inter-control communication networks.
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Convergence Test
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(a) The IEEE 14-bus system (DC)
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(b) The IEEE 118-bus system (AC)

Figure: Convergence of bus phase angle differences gj,k(i) between
distributed and centralized algorithms.

gj ,k(i) = θ(d)j ,k (i)− θ(c)j ,k

where θ(d)j ,k (i) = |θ(d)j (i)− θ(d)k (i)| and θ(c)j ,k = |θ(c)j − θ(c)k |
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14-Bus System	
 118-Bus System	


Convergence of Phase Estimates	




14-Bus System 

Communication Topology Flexibility Test

0 200 400 600 800 1000 1200 1400
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Iterations

Ph
as

e 
an

gl
e 

ga
p

 

 

g1,2 in scheme 1
g1,2 in scheme 2

g2,5 in scheme 1
g2,5 in scheme 2

Figure: Convergence test in the two difference communication schemes in
the IEEE 14-bus system
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•  Nonlinear (AC) state estimation [w/ Xie, et al. - T-SG’12]	


•  Multi-cast routing [w/ Li, Lai - JSAC:SG Series’12]	


•  Detection of data attacks, line outages, etc. [w/ Zhao, et al. - 

IEEE PES Annual Meeting’13]	


Related Work	




•  Smart grid is a cyber-physical approach to greater 

power system efficiency, security & reliability.	


Summary	




•  Smart grid is a cyber-physical approach to greater 

power system efficiency, security & reliability.	


•  Techniques from the information sciences are promising 

for application in this setting.	


Summary	




•  Smart grid is a cyber-physical approach to greater 

power system efficiency, security & reliability.	


•  Techniques from the information sciences are promising 

for application in this setting.	


•  E.g, game theory, information theory and statistical 

inference can be applied.	


Summary	




Thank You!	



