Submitted by admin on Fri, 10/25/2024 - 05:30

The growing size of modern datasets necessitates splitting a large scale computation into smaller computations and operate in a distributed manner. Adversaries in a distributed system deliberately send erroneous data in order to affect the computation for their benefit. Boolean functions are the key components of many applications, e.g., verification functions in blockchain systems and design of cryptographic algorithms. We consider the problem of computing a Boolean function in a distributed computing system with particular focus on security against Byzantine workers. Any Boolean function can be modeled as a multivariate polynomial with high degree in general. However, the security threshold (i.e., the maximum number of adversarial workers can be tolerated such that the correct results can be obtained) provided by the recent proposed Lagrange Coded Computing (LCC) can be extremely low if the degree of the polynomial is high. We propose three different schemes called coded Algebraic normal form (ANF), coded Disjunctive normal form (DNF) and coded polynomial threshold function (PTF). The key idea of the proposed schemes is to model it as the concatenation of some low-degree polynomials and threshold functions. In terms of the security threshold, we show that the proposed coded ANF and coded DNF are optimal by providing a matching outer bound.

Chien-Sheng Yang
A. Salman Avestimehr