Submitted by admin on Fri, 10/25/2024 - 05:30

A secure multi-party batch matrix multiplication problem (SMBMM) is considered, where the goal is to allow a master to efficiently compute the pairwise products of two batches of massive matrices, by distributing the computation across S servers. Any X colluding servers gain no information about the input, and the master gains no additional information about the input beyond the product. A solution called Generalized Cross Subspace Alignment codes with Noise Alignment (GCSA- NA) is proposed in this work, based on cross-subspace alignment codes. The state of art solution to SMBMM is a coding scheme called polynomial sharing (PS) that was proposed by Nodehi and Maddah-Ali. GCSA-NA outperforms PS codes in several key aspects-more efficient and secure inter-server communication, lower latency, flexible inter-server network topology, efficient batch processing, and tolerance to stragglers. The idea of noise alignment can also be combined with N-source Cross Subspace Alignment (N-CSA) codes and fast matrix multiplication algorithms like Strassen's construction. Moreover, noise alignment can be applied to symmetric secure private information retrieval to achieve the asymptotic capacity.

Zhen Chen
Zhuqing Jia
Zhiying Wang
Syed Ali Jafar